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1 Introduction

What is (big) data analytics? One can simply define it as the discovery of “models” for
data to extract information, draw conclusions and make decisions. A “Model” can be one
of several things:

• Statistical model which is the underlying distribution from which the data is drawn.
Example: given a set of real numbers, each one independently Gaussian distributed,
estimate the mean and variance. The model for data here is Gaussian distribution
N (µ, σ2) where each data is its independent realization.

• Use the data as a training set for algorithms of machine learning, e.g., Bayes nets,
support-vector machines, decision trees, etc.
Example: ([LRU14]) In “Netflix challenge”, the goal was to devise an algorithm
that predicts the ranking of movies by users.

• Extract the most prominent features of the data and ignore the rest [LRU14, page
4].
Example: Feature extraction, similarity, PCA

• Summarization of features
Example: First example is Page rank (Google’s web mining), probability that a
random walker on the graph meets that page at any given time. Second example is
clustering. Points that are close are summarized, e.g, by their clusters.

One should be careful about the effect of big data analytics. In large random data sets,
unusual features occur which are the effect of purely random nature of data. This is called
Bonferroni’s principle.

Example ([LRU14, page. 6]). Find evil-doers by looking for people who both were in the
same hotel on two different days. Here are the assumptions:

• 105 hotels

• Everyone goes to a hotel one day in 100

• 109 people

• People pick days and hotels at random independently

• Examine hotel records for 1000 days.

5



6 CHAPTER 1. INTRODUCTION

Probability that any two people visit a hotel on any given day is equal to 1
100 × 1

100 .
Probability that they pick the same hotel is 1

104
× 1

105
= 10−9. Probability that two people

visit the same hotel on two different days are 10−9 × 10−9 = 10−18.

Cardinality of the event space is: pairs of people
(

109

2

)
, pairs of days

(
103

2

)
. Expected

number of evil-doing events, using
(
n
2

)
≈ n2

2 , is given by:(
109

2

)
×
(

103

2

)
× 10−18 ≈ 5.1017.5.105.10−18 = 25× 104 = 250000.

Below it is shortly discussed how to carry out computation on large data sets, although it
will not be he focus of this lecture.

1.1 MapReduce and Hadoop

Figure 1.1: Racks of compute nodes

When the computation is to be performed on very large data sets, it is not efficient to fit
the whole data in a data-base and perform the computations sequentially. The key idea is
to use parallelism from “computing clusters”, not a super computer, built of commodity
hardware, connected by Ethernet or inexpensive switches.

The software stack consists of distributed file systems (DFS) and MapReduce. In a dis-
tributed file system Files are divided into chunks (typically 64 MB) and chunks are repli-
cated, typically 3 times on different racks. There exists a file master mode or name mode
with information where to find copies of files. Some of the implementations of DFS are
GFS (Google file system), HDFS (Hadoop Distributed File System, Apache) and Cloud
Store (open source DFS).

On the other hand MapReduce is the computing paradigm. In MapReduce, the system
manages parallel execution and coordination of tasks. Two functions are written by users
namely Map and Reduce. The advantage of this system is its robustness to hardware
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failures and it is able to handle large datasets. MapReduce is implemented internally by
Google.
The architecture of this system is such that compute nodes are stored on racks, each
with its own processor and storage device. Many racks are connected by a switch as
presented in Figure 1.1. They are connected by some fast network, interconnection by
Gigabit Internet. The principles of this system are as follows. First, files must be stored
redundantly to protect against failure of nodes. Second, computations must be divided
into independent tasks. If one fails it can be restored without affecting others.
We discuss an example of implementation matrix-vector multiplication using MapReduce
[LRU14].

Figure 1.2: Matrix-Vector Multiplication

Example (Matrix-Vector Multiplication by MapReduce). Suppose that the matrix M ∈
Rm×n and the vector v ∈ Rn are given and the goal is to compute their multiplication
x = Mv:

xi =
n∑
j=1

mijvj .

When n is large, say 107 then the direct computation requires the storage of the whole
matrix in the storage which might not be efficient. Particularly in practice the matrix M
can be sparse with say 10 or 15 non-zeros per row.
First the matrix and the vector is stored as the pairs (i, j,mij and the vector is stored
as (i, vi). MapReduce consists of two main functions, Map function and Reduce function.
To implement the multiplication using MapReduce, Map function produces a key-value
pair to each entries of the matrix and the vector. To the entry mij the pair (i,mijvj) is
associated where i is the key and mijvj is the pair. Note that it is assumed here that m
is small enough to store the vector v in its entirety in the memory. The Reduce function
receives all the key-value pairs, lists all pairs with key i and sum their values to get
(i,
∑n

j=1mijxj) which gives the ith entry of the product.
If the vector v cannot fit into the memory then the matrix M is divided into horizontal
strips with certain width and the vector v is divided into vertical stripes with the same size
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as the matrix stripes’ width. Accordingly the multiplication can be divided into sub-tasks,
each feasible using the MapReduce.

Example (Matrix-Matrix Multiplication by MapReduce). Given two matrices M ∈ Rn×m
and N ∈ Rm×r, the goal is to compute MN. Map function generates the following key-
value pairs:

• For each element mij of M produce r key-value pairs ((i, k), (M, j,mij)) for k =
1, . . . , r.

• For each element njk of N produce n key-value pairs ((i, k), (N, j, njk)) for i =
1, . . . , n.

The Reduce function computes the multiplication as follows:

• For each key (i, k), find the values with the same j.

• Multiply mij and njk to get mijnjk.

• Sum up all mijnjk over j to get
∑m

j=1mijnjk.



2 Prerequisites from Matrix Algebra

In this chapter we review some basic results from matrix algebra.
Real m× n matrices will be written as:

M = (mij)1≤i≤m,1≤j≤n ∈ Rm×n

Diagonal matrices are written as Λ = diag(λ1, . . . , λn) ∈ Rn×n. A Matrix U ∈ Rn×n is
called orthogonal if :

UUT = UTU = In

where In is the n× n identity matrix. O(n) denotes the set of orthogonal n× n matrices.

Theorem 2.1 (Singular Value Decomposition, SVD). Given M ∈ Rm×n, there exists
U ∈ O(m) and V ∈ O(n) and some Σ ∈ Rm×n with non-negative entries in its diagonal
and zeros otherwise such that:

M = UΣVT .

The diagonal elements of Σ are called singular values. The columns of U and V are called
left and right singular vectors of M.

Remark 1. If m < n, say, SVD may be written as :

∃U ∈ Rm×n,UUT = Im,∃V ∈ O(n);∃Σ ∈ Rn×n diagonal, such that: M = UΣVT .

Theorem 2.2 (Spectral Decomposition). Given M ∈ Rn×n symmetric, there exists V ∈
O(n), V = [v1, . . . ,vn] and Λ = diag(λ1, . . . , λn) such that:

M = VΛVT =
n∑
i=1

λiviv
T
i .

vi’s are eigenvectors of M with the eigenvalues λi.

• If for the symmetric matrix M, λi > 0, i = 1, . . . , n, then M is called positive definite
(p.d.) and writes as M � 0.
If for the symmetric matrix M, λi ≥ 0, i = 1, . . . , n, then M is called non-negative
definite (n.n.d.) and writes as M � 0.

• If M is non-negative definite, then it has a Cholesky decomposition

M = VΛ
1
2 (VΛ

1
2 )T ,

where Λ
1
2 = diag(λ

1
2
1 , . . . , λ

1
2
n ).

9



10 CHAPTER 2. PREREQUISITES FROM MATRIX ALGEBRA

• M � 0 ⇐⇒ xTMx ≥ 0 ∀x ∈ Rn

• M � 0 ⇐⇒ xTMx > 0 ∀x ∈ Rn, x 6= 0.

Definition 2.3. (a) Given M = (mij) ∈ Rn, tr(M) =
∑n

i=1mii is called the trace of M.

(b) Given M ∈ Rn×n, ‖M‖F =
√∑

i,jm
2
ij =

√
tr(MTM) is called the Frobenius norm.

(c) Given M ∈ Rn×n, M symmetric, ‖M‖S = max
1≤i≤n

|λi| is called the spectral norm.

• It holds that tr(AB) = tr(BA), A ∈ Rm×n, B ∈ Rn×m.

• tr(M) =
∑n

i=1 λi(M), det(M) =
∏n
i=1 λi(M).

A simple proof of this statement uses the spectral decomposition of M, for symmetric
M. First using the invariance property of trace under matrix commutation, we have

tr(M) = tr(VΛVT )

= tr(ΛVTV)

(a)
= tr(ΛIn)

= tr(Λ) =
n∑
i=1

λi(M),

where (a) follows from the fact that V is an orthogonal matrix. Similarly, the
spectral decomposition of symmetric matrix M can be used to prove the respective
statement for the determinant.

det(M) = det(VΛVT )

= det(Λ) det(VT ) det(V)

(b)
= det(Λ) =

n∏
i=1

λi(M),

where (b) follows from the fact that the determinant of an orthogonal matrix is either
+1 or −1.

Theorem 2.4 (Ky Fan, 1950 ([Fan50])). Let M ∈ Rn×n be a symmetric matrix with
eigenvalues λ1(M) ≥ · · · ≥ λn(M) and let k ≤ n. We have:

max
V∈Rn×k,VTV=Ik

tr(VTMV) =

k∑
i=1

λi(M).

and

min
V∈Rn×k,VTV=Ik

tr(VTMV) =
k∑
i=1

λn−i+1(M).



11

Proof. First of all, see that V = [v1 . . .vk] where {v1, . . . ,vk} are orthonormal vectors. If
the span of orthonormal vectors {w1, . . . ,wk} is same as the span of {v1, . . . ,vk}, then for
W = [w1 . . .wk], there is a unitary matrix A ∈ Rk×k, which is a basis changing matrix,
such that V = WA. We have:

tr(VTMV) = tr(ATWTMWA) = tr(WTMWAAT ) = tr(WTMW).

Also note that since tr(VTMV) =
∑k

i=1 vTi Mvi:

k∑
i=1

vTi Mvi =
k∑
i=1

wT
i Mwi.

The proof follows an iterative procedure. Suppose that u1, . . . ,un are eigenvectors of M
corresponding to λ1(M) ≥ · · · ≥ λn(M) and U = [u1, . . . ,un]. For k = 1, every vector v
can be written as v = a1u1 + · · ·+ anun = Ua, where a = [a1 . . . an]T . We have:

max
v∈Rn,vTv=1

vTMv = max
a∈Rn,aT a=1

aTUTMUa = max
a∈Rn,aT a=1

n∑
i=1

λi(M)a2
i .

Therefore for k = 1, max
v∈Rn,vTv=1

vTMv = λ1(M).

For k = 2, see that for each orthonormal vector {v1,v2}, one can find two orthonormal
vectors {v∗1,v∗2} with the same span so that v∗2 is inside the span of u2, . . . ,un. First of
all, it can be seen that:

2∑
i=1

vTi Mvi =
2∑
i=1

(v∗i )
TMv∗i .

Since v∗2 is inside the span of u2, . . . ,un, it can be written as v∗ = a2u2 + · · · + anun,
where a = [a2 . . . an]T . It can be seen that:

(v∗2)TMv∗2 =
n∑
i=2

λi(M)a2
i ≤ λ2(M).

Moreover from the previous step (v∗1)TMv∗1 ≤ λ1(M). Hence:

2∑
i=1

vTi Mvi ≤ λ1(M) + λ2(M).

The upper bound is achievable by choosing v1 = u1 and v2 = u2. The procedure goes
on iteratively. For a given k, the space spanned by v1, . . . ,vk has a (k − 1)-dimensional
subspace in intersection with the span of u2, . . . ,un. Find an orthonormal basis for this
subspace v∗2, . . . ,v

∗
k and extend it with another v∗1 to an orthonormal basis for the space

spanned by v1, . . . ,vk. Then the sum
∑k

i=2(v∗i )
TMv∗i is at most λ2(M) + · · · + λk(M)

and v∗1
TMv∗1 ≤ λ1(M). Therefore:

k∑
i=1

vTi Mvi ≤ λ1(M) + · · ·+ λk(M),
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where the upper bound is achievable using vi = ui for i = 1, . . . , k.

The special case of above statements for k = 1 writes as:

max
‖v‖=1,v∈Rn

vTMv = λmax(M)

min
‖v‖=1,v∈Rn

vTMv = λmin(M).

Note that:

max
‖v‖=1,v∈Rn

vTMv = max
v 6=0∈Rn

vTMv

vTv
.

Theorem 2.5. Given A,B ∈ Rn×n, symmetric with eigenvalues λ1 ≥ · · · ≥ λn and
µ1 ≥ · · · ≥ µn, respectively. Then

n∑
i=1

λiµn−i+1 ≤ tr(AB) ≤
n∑
i=1

λiµi.

Let λ+ = max{λ, 0} denote the positive part of λ ∈ R.

Theorem 2.6. Given M ∈ Rn×n symmetric with spectral decomposition
M = Vdiag(λ1, . . . , λn)VT , λ1 ≥ · · · ≥ λn. Then

min
A�0,rk(A)≤k

‖M−A‖2F

is attained at A∗ = Vdiag(λ+
1 , . . . , λ

+
k , 0, . . . , 0)VT with optimum value

∑k
i=1(λi−λ+

i )2 +∑n
i=k+1 λ

2
i .

Proof.

‖M−A‖2 = ‖M‖2 − 2tr(MA) + ‖A‖2

≥
n∑
i=1

λ2
i − 2

n∑
i=1

λiµi +
n∑
i=1

µ2
i

=
n∑
i=1

(λi − µi)2

=
k∑
i=1

(λi − µi)2 +
n∑

i=k+1

(λi − 0)2

≥
k∑
i=1

(λi − λ+
i )2 +

n∑
i=k+1

λ2
i .

Lower bound is attained if A = Vdiag(λ+
1 , . . . , λ

+
k , 0, . . . , 0)VT .
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Definition 2.7. (Löwner semi-ordering) Given V,W � 0. Define V �W if and only if
W−V � 0. It can be shown that the relation “�” imposes a semi-ordering on the set of
non-negative definite matrices, i.e., it satisfies the following properties

• (reflexive) V � V

• (anti-symmetric) V �W and W � V =⇒ V = W

• (transitive) U � V and V �W =⇒ U �W.

Theorem 2.8. Let V and W be two n × n non-negative definite matrices, such that
V = (vij) �W = (wij), with the eignevalues as:

• λ1(V) ≥ · · · ≥ λn(V),

• λ1(W) ≥ · · · ≥ λn(W)

(a) λi(V) ≤ λi(W), for i = 1, . . . , n

(b) vii ≤ wii, for i = 1, . . . , n

(c) vii + vjj − 2vij ≤ wii + wjj − 2wij

(d) tr(V) ≤ tr(W)

(e) det(V) ≤ det(W)

Proof. Exercise.

2.1 Projection and Isometry

Definition 2.9. The matrix Q ∈ Rn×n is called a projection matrix, or idempotent, if
Q2 = Q. It is additionally called an orthogonal projection if additionally QT = Q.

The linear transformation Q maps onto Im(Q), a k−dimensional subspace of Rn. Let
x ∈ Rn, and y = Qx ∈ Im(Q). Since Q is the projection matrix, Qy = y. For an
orthogonal projection, x −Qx is orthogonal to all vectors y in Im(Q) for every x ∈ Rn.
To see this, note that there is a vector z ∈ Rn such that y = Qz. Then we have:

yT (x−Qx) = zTQT (x−Qx).

Since for an orthogonal projection QT = Q then:

zTQT (x−Qx) = zTQ(x−Qx) = zT (Qx−Q2x) = zT (Qx−Qx) = 0.

Therefore yT (x−Qx) = 0 and x−Qx is orthogonal to y.
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x

Qxy

Figure 2.1: Orthogonal Projection

Lemma 2.10. Let M = VΛVT be the spectral decomposition of M ∈ Rn×n and sym-

metric. For k ≤ n, the matrix Q =

k∑
i=1

viv
T
i is an orthogonal projection onto Im(Q) =

〈v1, . . . ,vk〉.
Proof. For x ∈ Rn, we have:

Qx =
k∑
i=1

viv
T
i x =

k∑
i=1

(vTi x)vi =
k∑
i=1

γivi ∈ Im(Q).

Moreover:

Q2 = (
k∑
i=1

viv
T
i )(

k∑
i=1

viv
T
i ) =

k∑
i=1

viv
T
i = Q.

Finally Q is symmetric and therefore it is an orthogonal projection.

• Let Q be an orthogonal projection on Im(Q), Then I−Qis an orthonormal projection
onto ker(Q).
ker(Q) denotes the kernel of Q, and Im(Q) denotes the image of Q. First we verify
the condition for a matrix to be a projection matrix:

(I−Q)2 = (I−Q)(I−Q) = I− 2Q + Q2 = I−Q.

Therefore I−Q is a projection matrix. Since Q is symmetric, so is I−Q and hence
an orthogonal projection. For the next par, let y ∈ ker(Q), i.e., Qy = 0. Then:

(I−Q)y = y −Qy = y ∈ Im(I−Q).

Therefore ker(Q) ⊆ Im(I − Q). On the other hand, suppose that y ∈ Im(I − Q).
There is x ∈ Rn such that y = (I−Q)x. We have:

Qy = Q(I−Q)x = Qx−Q2x = Qx−Qx = 0.

So y ∈ ker(Q) and therefore Im(I−Q) ⊆ ker(Q). So Im(I−Q) = ker(Q).
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0

12

1⊥
2

x

E2x

Figure 2.2: Orthogonal Projection of E2

• Define En as follows:

En = In −
1

n
1n×n =


1− 1

n − 1
n . . . − 1

n
− 1
n 1− 1

n . . . − 1
n

...
...

. . .
...

− 1
n − 1

n . . . 1− 1
n


Then En is an orthogonal projection onto 1⊥n = {x ∈ Rn : 1Tnx = 0} where 1n is
all-one-vector in Rn.
See that for all x ∈ Rn:

1TnEnx = 1Tn (In −
1

n
1n×n)x = (1Tn − 1Tn )x = 0.

Therefore each vector in Im(En) is orthogonal to 1n.

Note that 1
n1n×n × 1

n1n×n = 1
n1n×n and 1

n1n×n is symmetric. Therefore it is an
orthogonal projection. Moreover its image is a one dimensional subspace spanned
by 1n. From the previous item, In − 1

n1n×n is also an orthogonal projection onto
the kernel of 1

n1n×n which is 1⊥n .

Theorem 2.11 (Inverse and determinant of partitioned matrix). Let M =

[
A B
BT C

]
be

a symmetric, invertible (regular) and A is also invertible (regular). Then:

(a) The inverse matrix of M is given by:

M−1 =

[
A−1 + FE−1FT −FE−1

−E−1FT E−1

]
where E is the Schur complement given by E = C−BTA−1B and F = A−1B.

(b) The determinant of M is given by:

det(M) = det(A) det(C−BTA−1B).
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There is also an extension of this theorem for general case where M =

[
A B
C D

]
(see

[Mur12, p.118]).

Definition 2.12 (Isometry). A linear transformation M : Rn → Rn is called an isometry
if xTx = (Mx)T (Mx) for all x ∈ Rn.

Some properties of isometries are as follows:

• If U and V are isometries, then the product UV is also an isometry.

• If U is an isometry, |det(U)| = 1.

• If U is an isometry, then |λ(U)| = 1 for all eigenvalues of U.



3 Multivariate Distributions and Moments

The term Probability is used in our everyday life. In an experiment of tossing a fair coin
for example, the probability it lands on head is 0.5. What does that mean? One expla-
nation known as the Bayesian interpretation, it represents the probability as a measure
of uncertainty about something [Mur12]. In other words, it is related to our information
regarding the considered experiment. Different concepts and mathematical explanations
regarding probabilities are presented in this chapter.

3.1 Random Vectors

Let X1, . . . , Xn, n ∈ N be random variables on the same probability space (Ω,F ,P):

Xi : (Ω,F ,P)→ (R,R), i = 1, . . . , p

where R is the Borel σ-algebra generated by the open sets of R.

• The vector X = (X1, . . . , Xp)
T is called a random vector.

• Analogously, the matrix X = (Xij)1≤i≤p,
1≤j≤n

, composed of the random variables Xij as

its elements, is called a random matrix.

• The joint distribution of a random vector is uniquely described by its multivariate
distribution function:

F (x1, . . . , xp) = P(X1 ≤ x1, . . . , Xp ≤ xp), where (x1, . . . , xp)
T ∈ Rp,

and xi is a realization of Xi, with i = 1, . . . , p.

• A random vector X = (X1, . . . , Xp)
T is called absolutely continuous if there exists

an integrable function f(x1, . . . , xn) ≥ 0 such that:

F (x1, . . . , xp) =

∫ xp

−∞
· · ·
∫ x1

−∞
f(x1, . . . , xp)dx1 . . . dxp.

where f is the probability density function (pdf) and F is the cumulative distribution
function (cdf).

Example. (Multivariate normal distribution) The multivariate normal (or Gaussian) dis-
tribution of the random vector X ∈ Rp has the following pdf:

f(x) =
1

(2π)p/2|Σ|1/2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
,

17
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where x = (x1, . . . , xp)
T ∈ Rp, and the parameters: µ ∈ Rp, Σ ∈ Rp×p, where Σ � 0.

This pdf can be denoted by X = (X1, . . . , Xp)
T ∼ Np(µ,Σ). Note that Σ must have full

rank. There exists an n−dimensional Gaussian random variable, if rk(Σ) < p, however it
has no density function with respect to p− dimensional Lebesgue measure λp.

3.2 Expectation and Covariance

Definition 3.1. Given a random variable X = (X1, . . . , Xp)
T .

(a) The expectation (vector) of X, E(X), is defined by:

E(X) = (E(X1), . . . ,E(Xp))
T .

(b) The covariance matrix of X, Cov(X), is defined by:

Cov(X) = E
(
(X− E(X))(X− E(X))T

)
.

The expectation vector E(X) is constructed component-wise of E(Xi), where i = 1, . . . , p.
Furthermore, the covariance matrix has the covariance value Cov(Xi, Xj) as its (i, j)-th
element given by

(Cov(X))i,j = Cov(Xi, Xj) = E ((Xi − E(Xi))(Xj − E(Xj))) .

Theorem 3.2. Given the random vectors X = (X1, . . . , Xp)
T , and Y = (Y1, . . . , Yp)

T ,
the following statements hold:

(a) E(AX + b) = AE(X) + b

(b) E(X + Y) = E(X) + E(Y)

(c) Cov(AX + b) = ACov(X)AT

(d) Cov(X + Y) = Cov(X) + Cov(Y), if X and Y are stochastically independent.

(e) Cov(X) � 0, i.e., the covariance matrix is non-negative definite.

Proof. Prove (a)-(d) as exercise. Regarding e) assume that a ∈ Rp be a vector, then

aTCov(X)a
(c)
= Cov(aTX) = Var(aTX) ≥ 0.

Show as an exercise that if X ∼ Np(µ,Σ), then

E(X) = µ, and Cov(X) = Σ.



3.2. EXPECTATION AND COVARIANCE 19

Theorem 3.3 (Steiner’s rule). Given a random vector X = (X1, . . . , Xp)
T , it holds that

E
(
(X− b)(X− b)T

)
= Cov(X) + (b− E(X))(b− E(X))T , ∀b ∈ Rp.

Proof. Let µ = E(X). Note that

E
(
(X− µ)(b− µ)T

)
= E (X− µ) (b− µ)T = 0,

and E(a) = a,∀a ∈ Rp, then

E
(
(X− µ+ µ− b)(X− µ+ µ− b)T

)
= E

(
(X− µ)(X− µ)T

)
+ E

(
(µ− b)(µ− b)T

)
+ E

(
(X− µ)(µ− b)T

)
+ E

(
(µ− b)(X− µ)T

)
= E

(
(X− µ)(X− µ)T

)
+ E

(
(µ− b)(µ− b)T

)
= Cov(X) + (b− E(X))(b− E(X))T ,

where we used the linearity of expectation to show that

E
(
(X− µ)(µ− b)T

)
=
(
(E(X)− µ)(µ− b)T

)
= 0.

Theorem 3.4. Let X be a random vector with E(X) = µ and Cov(X) = V. Then

P(X ∈ Im(V) + µ) = 1.

Proof. Let ker(V) = {x ∈ Rp | Vx = 0} be the kernel (or null space) of V. Assume a
basis as ker(V) = 〈a1, . . . ,ar〉. For i = 1, . . . , r, it holds that

aTi Vai = Var(aTi V) = 0.

Hence, aTi X should be almost surely equal to its expectation, namely, E(aTi X) = aTi µ. In
other words,

P(aTi X = aTi µ) = 1, i.e., P(aTi (X− µ) = 0) = 1,

and
P(X− µ ∈ a⊥i ) = 1.

Given the fact that for an arbitrary random variable Z and two closed sets A and B, the
following expression is valid

P(Z ∈ A) = P(Z ∈ B) = 1 =⇒ P(Z ∈ A ∩B) = 1, (3.1)

it holds that
P((X− µ) ∈ a⊥1 ∩ · · · ∩ a⊥r ) = 1.

However, given that Im(V) = ker(V)⊥ =< a1, . . . ,ar >
⊥= a⊥1 ∩ · · · ∩ a⊥r . Therefore,

P((X− µ) ∈ Im(V)) = 1.

Prove (3.1) as an exercise.
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3.3 Conditional Distribution

Let X = (X1, . . . , Xp)
T be a random vector such that X = (Y1,Y2)T where Y1 = (X1, . . . , Xk)

and Y2 = (Xk+1, . . . , Xp). Suppose that X is absolutely continuous with density fX. Then
the conditional density of Y1 given Y2 = y2 is denoted by

fY1|Y2
(y1 | y2) =

fY1,Y2(y1,y2)

fY2(y2)
,

where y1 ∈ Rk is a realization of Y1. Furthermore, it also holds that

P(Y1 ∈ B | Y2 = y2) =

∫
B

fY1|Y2
(y1 | y2)dy1, ∀B ∈ Rk.

Theorem 3.5 ([Mur12, Theorem 4.3.1]). Suppose that (Y1,Y2) ∼ Np(µ,Σ) where

µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, and Λ = Σ−1 =

[
Λ11 Λ12

Λ21 Λ22

]
.

Then

(a) The distribution of Y1 and Y2 are given by Y1 ∼ Nk(µ1,Σ11) and Y2 ∼ Np−k(µ2,Σ22),
respectively.

(b) The conditional density fY1|Y2
(y1 | y2) is given by the multivariate normal distribution

fY1|Y2
(y1 | y2) ∼ Nk(µ1|2,Σ1|2). The parameters µ1|2 and Σ1|2 are defined as

µ1|2 = µ1 + Σ12Σ
−1
22 (y2 − µ2)

= µ1 −Λ−1
11 Λ12(y2 − µ2)

= Σ1|2(Λ11µ1 −Λ12(y2 − µ2)),

and

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21 = Λ−1

11 .

Note that Σ1|2 is the Schur complement, introduced in the previous chapter.

3.4 Maximum Likelihood Estimation

Suppose x = (x1, . . . , xn) is a random sample from a pdf f(x;ϑ), where ϑ is a parameter
vector. The function L(x;ϑ) is referred to as the likelihood function, and defined as

L(x;ϑ) =

n∏
i=1

f(xi;ϑ). (3.2)
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Furthermore, the function `(x;ϑ) represents the log-likelihood function, and is defined as

`(x;ϑ) = logL(x;ϑ) =
n∑
i=1

log f(xi;ϑ). (3.3)

For a given sample x = (x1, . . . ,xn), one can notice that both functions in (3.2) and (3.3)
depend on the parameters in ϑ. Therefore, ϑ is needed to be determined such that it fits
the data in x through L(x;ϑ), or equivalently `(x;ϑ). The estimate of ϑ, denoted by ϑ̂,
is obtained as

ϑ̂ = arg max
ϑ

`(x;ϑ)

and called the maximum likelihood estimate (MLE) of ϑ.

Theorem 3.6. Let x1, . . . ,xn, n ∈ N, be i.i.d samples obtained from the distribution
X ∼ Np(µ,Σ). The MLEs of µ and Σ are given by

µ̂ =
1

n

n∑
i=1

xi = x, and Σ̂ = Sn =
1

n

n∑
i=1

(xi − x)(xi − x)T .

Proof. In order to prove this theorem, Steiner’s Lemma is required at this point along
with the following fundamentals of matrix differentiation. For arbitrary matrices V,A
and vector y, the following statements, which to be proved as exercise, are considered
afterwards for simplification purposes.

• ∂
∂V log det V = (V−1)T , if V is invertible.

• ∂
∂V tr(VA) = AT .

• ∂(yTAy)
∂y = (A + AT )y.

Starting with the log-likelihood function

`(x1, . . . ,xn;µ,Σ) =

n∑
i=1

(
log

1

(2π)p/2
+ log

1

| Σ|1/2 −
1

2
(xi − µ)TΣ−1(xi − µ)

)
,

in order to be maximized, the additive constants can be dropped, hence the log-likelihood
function is defined by

`∗(µ,Σ) =
p

2
log | Σ−1 | − 1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ) (3.4)

By utilizing the previously presented fundamentals, and choosing Σ−1 = Λ, (3.4) can be



22 CHAPTER 3. MULTIVARIATE DISTRIBUTIONS AND MOMENTS

reformulated as

`∗(µ,Λ) =
n

2
log |Λ| − 1

2

n∑
i=1

(xi − µ)TΛ(xi − µ)

=
n

2
log |Λ| − 1

2

n∑
i=1

tr
(
Λ(xi − µ)(xi − µ)T

)
=
n

2
log |Λ| − 1

2
tr

(
Λ

n∑
i=1

(xi − µ)(xi − µ)T

)
. (3.5)

Based on Steiner’s rule, the summation term in (3.5) can be rewritten as

n∑
i=1

(xi − µ)(xi − µ)T =
n∑
i=1

(xi − x)(xi − x)T + n(x− µ)(x− µ)T

= nSn + n(x− µ)(x− µ)T , (3.6)

hence `∗(µ,Λ) is given by

`∗(µ,Λ) =
n

2
log |Λ| − 1

2
tr
(
Λ(nSn + (x− µ)(x− µ)T )

)
=
n

2
log |Λ| − n

2
tr (ΛSn)− 1

2
tr
(
Λ(x− µ)(x− µ)T

)
. (3.7)

Based on (3.6), note that nSn �
∑n

i=1(xi−µ)(xi−µ)T , with equality when x = µ. Thus,
µ̂ = x, and (3.7) is formulated as

`∗(Λ) =
n

2
log | Λ | − n

2
tr (ΛSn) . (3.8)

Moreover, in order to find Λ̂, the derivative of log-likelihood function in (3.8) with respect
to Λ is calculated to find its zeros, as

∂`∗(Λ)

∂Λ
= 0 =⇒ n

2
Λ−1 − n

2
Sn = 0,

hence Λ̂−1 = Σ̂ = Sn.
Another way to obtain similar results is by taking the partial derivative of `∗(µ,Λ) with
respect to µ and subsequently with respect to Λ to find the function’s zeros, as follows

∂

∂µ
`∗(µ,Λ) = −1

2
(Λ + ΛT )(x− µ) = −Λ(x− µ) = 0 =⇒ µ̂ = x.

∂

∂Λ
`∗(µ = µ̂,Λ) =

n

2
Λ−1 − n

2
Sn −

1

2
(x− µ)(x− µ)T = 0 =⇒ Λ̂−1 = Σ̂ = Sn.



4 Dimensionality Reduction

Given high dimensional data, the goal of dimensionality reduction algorithms is to find
the “optimal” way of representing this data in a low dimensional space. Assigning low
dimensional vectors of dimensions 1,2 or 3 to the available high dimensional data allows its
graphical representation (in a 1D, 2D, or 3D plot for instance). Furthermore, the notion
of “optimal” low dimensional representation must be specified. In the following sections,
we will learn different concepts on dimensionality reduction.

4.1 Principal Component Analysis (PCA)

In general, PCA is a tool that searches for a few linear combinations to represent the given
data, losing as little information as possible. More specifically, given data x1,x2, . . . ,xn ∈
Rp, the goal is to

• find a k−dimensional subspace such that the projections of x1, . . . ,xn thereon rep-
resent the original points on its best.

• find the k−dimensional projections that preserve as much variance as possible.

Both of above accounts are equivalent as we will see.

Given x1,x2, . . . ,xn ∈ Rp independently sampled from some distribution, the sample mean
x and sample covariance matrix Sn are defined as follows:

x =
1

n

n∑
i=1

xi, Sn =
1

n− 1

n∑
i=1

(xi − x)(xi − x)T .

Note that the sample mean x is an unbiased estimator of E(X), and sample covariance
matrix Sn is an unbiased estimator of Σ = Cov(X).

4.1.1 Optimal Projection

Consider the following optimization problem:

min
a∈Rp

Q∈On

rk(Q)=k

n∑
i=1

‖xi − a−Q(xi − a)‖2F

where On is the space of n × n orthogonal projections. The idea is to find a shift vector
a and an orthogonal projection Q on a k−dimensional subspace, such that the projection

23
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points are closest to the original ones. We have:

min
a,Q

n∑
i=1

‖xi − a−Q(xi − a)‖2F = min
a,Q

n∑
i=1

‖(I−Q)(xi − a)‖2F

= min
a,R

n∑
i=1

‖R(xi − a)‖2F

= min
a,R

n∑
i=1

(xi − a)TRTR(xi − a)

= min
a,R

n∑
i=1

(xi − a)TR(xi − a)

= min
a,R

n∑
i=1

tr(R(xi − a)(xi − a)T )

Note that R = (I − Q) is also an orthogonal projection, and hence RTR = R2 = R.
Moreover using Steiner’s lemma, we have:

1

n

n∑
i=1

(xi − a)(xi − a)T =
1

n

n∑
i=1

(xi − x)(xi − x)T + (x− a)(x− a)T

Hence:

min
a,Q

n∑
i=1

‖xi − a−Q(xi − a)‖2F = min
a,R

n∑
i=1

tr(R(xi − a)(xi − a)T )

= min
a,R

tr(R

n∑
i=1

(xi − a)(xi − a)T )

≥ min
R

tr(R
n∑
i=1

(xi − x)(xi − x)T )

= min
R

tr(R(n− 1)Sn)

= min
Q

(n− 1)tr(Sn(I−Q)).

It remains to solve:

max
Q

tr(SnQ).

Since Q is an orthogonal projection matrix of rank k, it is non-negative definite, it can
be written as Q =

∑k
i=1 qiq

T
i , where qi’s are orthonormal. Therefore if Q̃ = (q1, . . . ,qk),

the matrix Q can be written as Q̃Q̃T . Therefore Ky Fan’s theorem implies that

max
Q

tr(SnQ) = max
Q̃

Q̃T Q̃=Ik

tr(Q̃TSnQ̃) =

k∑
i=1

λi(Sn) ,
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where λ1(Sn) ≥ · · · ≥ λn(Sn) are the eigenvalues of Sn in decreasing order. The maximum
is attained if q1, . . . ,qk are the orthonormal eigenvectors corresponding to λ1(Sn) ≥ · · · ≥
λk(Sn).

4.1.2 Variance-Preserving Projection

The goal is to find the k−dimensional projection that preserves the most variance. This
idea can be formulated as follows:

max
Q

n∑
i=1

‖Qxi −
1

n

n∑
j=1

Qxj‖2 = max
Q

n∑
i=1

‖Qxi −Qx‖2

= max
Q

n∑
i=1

‖Q(xi − x)‖2

= max
Q

n∑
i=1

(Q(xi − x))TQ(xi − x)

= max
Q

n∑
i=1

(xi − x)TQTQ(xi − x)

= max
Q

n∑
i=1

(xi − x)TQ(xi − x)

= max
Q

n∑
i=1

tr(Q(xi − x)(xi − x)T )

= max
Q

tr(Q

n∑
i=1

(xi − x)(xi − x)T )

= max
Q

tr((n− 1)QSn) .

However the last optimization problem appeared also above and therefore following a
similar solution, the optimal projection Q is equal to

∑k
i=1 qiq

T
i where q1, . . . ,qk are the

orthonormal eigenvectors corresponding to λ1(Sn) ≥ · · · ≥ λk(Sn).
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Figure 4.1: Scree Plot

4.1.3 How to carry out PCA

In order carry out PCA on the given x1, . . . ,xn ∈ Rp data points, we first fix k � p.
Then, we proceed to the following steps

• Compute Sn = 1
n−1

∑n
i=1(xi−x)(xi − x)T . Find its spectral decomposition as Sn =

VΛVT where Λ = diag(λ1, . . . , λp) with λ1 ≥ · · · ≥ λp and V = (v1, . . . ,vp) ∈ O(p).

• v1, . . . ,vk are called the k Principal eigenvectors to the principal eigenvalues λ1 ≥
· · · ≥ λk.

• Projected points are found by

x̂i =

vT1
...

vTk

xi, i = 1, . . . , n .

Let us discuss computational complexity of PCA. Using the conventional method, dis-
cussed above, the complexity of constructing Sn is O(np2) 1 and the complexity of spectral
decomposition is O(p3) [Ban08]. Therefore the computational complexity of both steps
together are O(max{np2, p3}).
However this can be improved. Assume p < n, then we write

X = [x1, . . . ,xn] and Sn =
1

n− 1
(X− x1Tn )(X− x1Tn )T .

1 This is called Big-O notation or Bachmann-Landau notation. A function f(n) is O(g(n)) if for some
n0 > 0 and a constant c > 0, |f(n)| ≤ c|g(n)| for n ≥ n0. For example, if an algorithm over n objects
takes at most n2 + n time to run, then its complexity is O(n2).
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Figure 4.2: Eigenvalues of Sn and its scree plot

Consider singular value decomposition (SVD) of X−x1Tn = Up×pDVT
p×n where U ∈ O(p),

VTV = Ip, D = diag(σ1, . . . , σp). Using this decomposition, we have

Sn =
1

n− 1
UDVTVDUT =

1

n− 1
UD2UT .

Hence U = [u1, . . . ,up] contains the eigenvectors of Sn. Computational complexity of
finding SVD for X− x1Tn is given by O(min{n2p, p2n}). However if one is only interested
in top k eigenvectors, the cost reduces to O(knp).
Another issue is about PCA is the choice of k. If the goal of PCA is data visualization,
then k = 2 or k = 3 are reasonable choices. But PCA is also used for dimensionality
reduction. In practice, it can happen that the data lies in a low dimensional subspace
but it is corrupted by a high dimensional noise. Also, it is possible that some algorithms
are computationally expensive to run on high dimensions and it makes sense to bring the
data to lower dimensions and run the algorithm more efficiently on the lower dimensional
space.
To choose proper k, one heuristic is to look at the scree plot or scree graph. The scree plot
is the plot of ordered eigenvalues of Sn. The scree graph was introduced by Raymond B.
Cattell [Cat66]. It is a very subjective way of determining k. The idea is to find k from
the plot such that the line through the points to the left of k is steep and the line through
the points to the right of k is not steep. This looks like an elbow in the scree plot. In
Figure 4.1, a scree plot is shown. The value of k can be chosen by recognizing an elbow
in the graph of ordered eigenvalues.
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Figure 4.3: Eigenvalues of Sn for Spike model with β = 1.5, 0.5

4.1.4 Eigenvalue structure of Sn in high dimensions

Suppose that x1, . . . ,xn ∈ Rp are independent samples of a Gaussian random variable
X ∼ Np(0,Σ). Let X = [x1, . . . ,xn]. Estimate Σ by Sn = 1

n

∑n
i=1 xix

T
i = 1

nXXT .
If p is fixed, from law of large numbers, Sn will tend to Σ as n→∞ almost everywhere.
However if both n and p are large, then it is not clear anymore what the relation between
Sn and Σ is. To see this, consider the case where Σ = I [Ban08]. Figure 4.2 shows the
scree plot and histogram of the eigenvalues for n = 1000 and p = 500. The plot shows that
there are many eigenvalues bigger than 1 unlike Σ = I which has all eigenvalues equal to
one. Scree plot also implies that data lies on a low dimensional space which is also not
true.
Following theorem is about distribution of eigenvalues of Sn when p and n are comparable.

Theorem 4.1 (Marchenko-Pastur, 1967). Let X1, . . . ,Xn be i.i.d. random vectors on
Rp with E(Xi) = 0 and Cov(Xi) = σ2Ip. Let X = (X1, . . . ,Xn) ∈ Rp×n and Sn =
1
nXXT ∈ Rp×p. Let λ1, . . . , λp be the eigenvalues of Sn. Suppose that p, n→∞ such that
p
n → γ ∈ (0, 1] as n → ∞. Then the sample distribution of λ1, . . . , λp converges almost
surely to the following density

fγ(u) =
1

2πσ2uγ

√
(b− u)(u− a), a ≤ u ≤ b
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with a(γ) = σ2(1−√γ)2 and b(γ) = σ2(1 +
√
γ)2.

Proof. Refer to [Bai99] for various proofs.

Marchenko-Pastur distribution is presented in Figure 4.2 by the blue curve.

Remark 2. If γ > 1, there will be a mass point at zero with probability 1− 1
γ . Since γ > 1,

then n < p. Moreover the rank of Sn = 1
nXXT will be at most min(p, n) which is n < p in

this case. This means that Sn is not full rank and zero is definitely one of the eigenvalues.

The theorem shows that there is a wide spread of spectrum of eigenvalues even in the case
i.i.d. distributed random variables. The main question is to what degree PCA can recover
low dimensional structure from the data. Is PCA useful at all?

4.1.5 Spike Models

Suppose that there is a low dimensional structure in data. Let us say that each sample
results from a point on a one dimensional space with an additional high dimensional noise
perturbation. The one dimensional part is modeled by

√
βGv where v is a unit norm

vector in Rp, β is a non-negative constant and G is the standard normal random variable.
The high dimensional noise is modeled by U ∼ Np(0, Ip). Therefore the samples are
Xi = Ui +

√
βGiv with E(Xi) = 0. Since Gi and Ui are independent, using Theorem 3.2,

we have that

Cov(Xi) = Cov(Ui) + Cov(
√
βGiv) = Ip + vCov(

√
βGi)v

T = Ip + βvvT .

Suppose that X1, . . . ,Xn are i.i.d. distributed with Cov(Xi) = Ip + βvvT . Let us look at
distribution of eigenvalues for some numerical examples. Figure 4.3 shows the distribution
of eigenvalues for β = 1.5 and β = 0.5 and p = 500 and n = 1000, and v = e1. It can be
seen that all eigenvalues appear inside the interval proposed by Marchenko-Pastur distri-
bution when β = 0.5. However, the situation is different when β = 1.5. One eigenvalue
pops out of the interval in this case. Note that in general the maximum eigenvalue of
Ip + βe1e

T
1 is 1+1.5 which is 2.5, and all other eigenvalues are 1.

The question is whether there is a threshold for β above which we will see one eigenvalue
popping out. The following theorem provides the transition point known as BPP (Baik,
Ben Arous and Péché) transition.

Theorem 4.2 ([BAP05]). Let X1, . . . ,Xn be i.i.d. random vectors on Rp with E(Xi) = 0
and Cov(Xi) = Ip + βvvT , β ≥ 0, v ∈ Rp, ‖v‖ = 1. Let X = (X1, . . . ,Xn) ∈ Rp×n and
Sn = 1

nXXT ∈ Rp×p. Suppose that p, n→∞ such that p
n → γ ∈ (0, 1] as n→∞.

• If β ≤ √γ then λmax(Sn)→ (1 +
√
γ)2 and |〈vmax,v〉|2 → 0.

• If β >
√
γ then λmax(Sn)→ (1 + β)(1 + γ

β ) > (1 +
√
γ)2 and |〈vmax,v〉|2 → 1−γ/β2

1−γ/β .

The interpretation of this theorem is that, only if β >
√
γ, the largest eigenvalue exceeds

the upper asymptotic bound of the asymptotic support and the corresponding eigenvector
has a non-trivial correlation with the eigenvector v.
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Figure 4.4: Embedding of ∆1,∆2 and ∆3

4.2 Multidimensional Scaling

Suppose that the pairwise distance of three points are given by the distance matrix

∆1 =

0 1 1
1 0 1
1 1 0

 .
The question is whether these points can be presented in a low dimensional space such that
their pairwise distances are preserved. It is easy to see that this matrix has an embedding
in a 2−dimensional space, given by a equilateral triangle. Now consider the following
distance matrix for four points

∆2 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .
An embedding of this matrix should have four points with equal distances. This is not
possible in a 2-dimensional space but it is possible in a 3−dimensional space. This will
have tetrahedron shape. Consider another distance matrix for four points

∆3 =


0 1

√
2 1

1 0 1
√

2√
2 1 0 1

1
√

2 1 0

 .
This can be embedded in 2−dimensional space using a square with side length of 1. These
examples are all about finding points in a low dimensional Euclidean space given only
their pairwise distances. Evidently, the result is rotation and translation invariant.
Given n objects and O1, . . . , On and pairwise dissimilarities δij between objects i and j.
Assume that δij = δji ≥ 0 and δii = 0 for all i, j = 1, . . . , n. Define ∆ = (δij)1≤i,j≤n as
the dissimilarity matrix. Define Un, the set of dissimilarity matrices as follows:

Un = {∆ = (δij)1≤i,j≤n|δij = δji ≥ 0, δii = 0, for all i, j = 1, . . . , n}.
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Our objective now is to find n points x1, . . . ,xn in a Euclidean space, typically Rk, such
that the distances ‖xi − xj‖ fit the dissimilarities δij best.

Example ([Mat97]). Consider towns in a country, say Germany and δij is the driving
distance from the town A to the town B. Find an embedding in R2, i.e., the map.

Consider X = [x1, . . . ,xn]T ∈ Rn×k and distances dij(X) = ‖xi − xj‖, thus D(X) =
(dij(X))1≤i,j≤n ∈ Rn×n. Often, it is mathematically more convenient to consider a trans-
formation of original distances and dissimilarities. One way is to consider the power q ≥ 1
of these values, i.e., δqij , d

q
ij(X). For this purpose, the element-wise powered matrices are

denoted by
∆(q) = (δqij)1≤i,j≤n,D

(q)(X) = (dqij(X))1≤i,j≤n .

In its completely general formulation, the approximation problem of matrix multidimen-
sional scaling (MDS) is as follows. Given a dissimilarity matrix ∆, a power transformation
q ≥ 1, a metric d on Rk and a matrix norm ‖.‖, solve

min
X∈Rn×k

‖∆(q) −D(q)(X)‖ . (4.1)

4.2.1 Characterization of Euclidean Distance Matrices

The dissimilarity matrix ∆ = (δij)1≤i,j≤n ∈ Un is called Euclidean distance matrix, or
it has a Euclidean embedding in Rk, if there exist vectors x1, . . . ,xn ∈ Rk such that

δ2
ij = ‖xi − xj‖2 for all i, j where ‖.‖ is the Euclidean norm (i.e., ‖y‖ =

√∑k
i=1 y

2
i ).

This would be the case if the approximation problem from eq. (4.1) can be solved with
error 0 for q = 2. In the reminder of this section, an explicit solution is constructed for
a general class of matrix norms. For this task, the projection matrix En = In − 1

n1n1
T
n

plays an important role as we will see. Note that 1n1
T
n = 1n×n.

Theorem 4.3. The dissimilarities matrix ∆ ∈ Un have an Euclidean embedding in Rk
if and only if −1

2En∆
(2)En is non-negative definite and rk(En∆

(2)En) ≤ k. The least k
which allows for an embedding is called dimensionality of ∆.

Proof. Given X = [x1, . . . ,xn]T ∈ Rn×k, it holds (proof as exercise) that

−1

2
D(2)(X) = XXT − 1nx̂

T − x̂1Tn ,

where x̂ = 1
2 [xT1 x1, . . . ,x

T
nxn]T . Using this relation and the fact that En1 = 0, we get

−1

2
EnD

(2)(X)En = EnXXTEn � 0 .

Note that the right hand side of the equality is non-negative definite, since X ∈ Rn×k,
rk(XXT ) ≤ k thus rk(EnD

(2)(X)En) ≤ k. If there is an Euclidean embedding of ∆ then
∆(2) = D(2)(X) for some D(2), then

−1

2
En∆

(2)En = −1

2
EnD

(2)(X)En � 0 ,

rk(−1

2
En∆

(2)En) = rk(−1

2
EnD

(2)(X)En) ≤ k .
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For the opposite direction suppose that −1
2En∆

(2)En � 0 and rk(En∆
(2)En) ≤ k. Then

there exists n× k matrix X such that (proof as exercise)

−1

2
En∆

(2)En = XXT , and XTEn = XT .

Then X = [x1, . . . ,xn]T is an appropriate configuration, since

−1

2
EnD

(2)(X)En = EnXXTEn = XXT = −1

2
En∆

(2)En.

It follows that D(2)(X) = ∆(2). (proof as exercise)

4.2.2 The Best Euclidean Fit to a Given Dissimilarity Matrix

Let ‖.‖ denote the Frobenius norm, ‖A‖ =
(∑

i,j a
2
ij

) 1
2
. Let λ+ denote the positive part

of λ as λ+ = max{λ, 0}.

Theorem 4.4 ([Mat97, p. 31]). Let ∆ ∈ Un be a dissimilarity matrix, and −1
2En∆

(2)En

has the spectral decomposition −1
2En∆

(2)En = Vdiag(λ1, . . . , λn)VT with λ1 ≥ · · · ≥ λn
and orthogonal matrix V. Then the optimization problem

min
X∈Rn×k

‖En

(
∆(2) −D(2)(X)

)
En‖

has a solution given by

X∗ =

[√
λ+

1 v1, . . . ,
√
λ+
k vk

]
∈ Rn×k .

Proof. Note that a solution to

min
A�0,rk(A)≤k

‖ − 1

2
En∆

(2)En −A‖

is given by A∗ = Vdiag(λ+
1 , . . . , λ

+
k , 0, . . . , 0)VT , according to Theorem 2.6. Then, it

holds

−1

2
EnD

(2)(X∗)En = EnX
∗X∗TEn

= En[v1, . . . ,vk]diag(λ+
1 , . . . , λ

+
k )[v1, . . . ,vk]

TEn

= Vdiag(λ+
1 , . . . , λ

+
k , 0, . . . , 0)VT = A∗ .

So that the minimum is attained in the set
{
−1

2EnD
(2)(X)En|X ∈ Rn×k

}
.
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Figure 4.5: Swiss roll data with 1500 samples

4.2.3 Non-linear Dimensionality Reduction

Suppose that the data points do not lie near a linear subspace but have a low dimensional
structure anyway. Consider the data point in Figure 4.5. The model is call two-dimensional
swiss roll. The points lie on a two dimensional manifold which is a non-linear one. Previous
dimensionality reduction methods for finding a low-dimensional embedding of this data
cannot detect the proper structure of the data. The main reason is that the geodesic
distance of points should be considered instead of Euclidean distances. The points that
are far apart on the manifold, measured through their shortest path on the manifold, may
look very close in high-dimensional space.

The complete isometric feature mapping, ISOMAP is an example of non-linear dimension-
ality reduction [TDSL00]. Given data x1, . . . ,xn ∈ Rp, lying on a manifold, e.g., the swiss
roll, the idea is to approximate the geodesic distance of the data points by constructing
a weighted graph and finding the shortest path between vertices. For the sake of clarity,
an example of a weighted graph is depicted in Figure 4.6. The algorithm consists of three
steps:

1. Construct neighborhood graph: find a weighted graph G(V,E,W) with vertices
vi = xi such that two vertices vi and vj are connected only if ‖xi−xj‖ ≤ ε. Another
way is to connect each point to its K nearest neighbors.

2. Compute the shortest paths: for each pair (vi, vj) compute the shortest path (Di-
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jkstra’s algorithm). The geodesic distance δ(vi, vj) can be taken as number of
hops/links from vi to vj or sum of ‖xl − xk‖ on a shortest path. 2

3. Construct d−dimensional embedding: apply MDS on the basis of geodesic distances
∆ = (δ(vi, vj))1≤i,j≤n.

v1

v2

v3

v4

v5

v6
v7

w12

w24

w14

w13 w34

w35

w45

w46

w56
w67

Figure 4.6: Example weighted graph G(V,E,W) with vertices V = {v1, . . . ,v7}, edges
E = {e12, . . . , e67} where every edge eij has a corresponding associated weight
wij = wji, thus leading to the graph’s weight matrix W = (wij)i,j=1,...,7 ∈
R7×7.

Note that, this algorithm’s performance is sensitive to the choice of ε. A very small choice
of ε leads to disconnected graph and a large ε misses the low dimensional structure of
data. Shortcomings of this approach are:

• Very large distances may distort local neighborhoods.

• Computational complexity: Dijkstra’s algorithm, MDS.

• Not robust to noise perturbation: as mentioned above, ε should be adapted to noise
perturbation. There are some ways of choosing ε based on the given data [BS02] by
looking at the trade-off between two parameters. One is the fraction of the variance
in geodesic distance estimates not accounted for in the Euclidean embedding and
the other is the fraction of points not included in the largest connected component
of the neighborhood graph [BS02, Fig. 1].

2Locally the geodesic distance can be well appropriated by the Euclidean one.
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4.3 Diffusion Maps

Diffusion Maps is a non-linear dimensionality reduction technique or feature extraction,
introduced by Coifman and Lafon [CL06]. With ISOMAP, it is another example of man-
ifold learning algorithms that capture the geometry of the data set. In these algorithms,
the data is represented by parameters of its underlying geometry in a low dimensional
Euclidean space. The main intention is to discover the underlying manifold that the data
has been sampled from. The main idea is to construct a weight function (or kernel) based
on the connection between data. The eigenvectors obtained using this kernel represent the
data in a lower dimension. The diffusion map framework consists of the following steps
[TCGC13]:

1. Construct a weighted graph G(V,E,W) on the data. The pairwise weights measure
the closeness between data points.

2. Define a random walk on the graph determined by a transition matrix constructed
from the weights W.

3. Perform a non-linear embedding of the points in a lower dimensional space based on
the parameters of the graph and its respective transition matrix.

To this end, let x1, . . . ,xn ∈ Rp be n samples. We start from constructing a weighted
graphG(V,E,W). In a diffusion map, the nodes which are connected by an edge with large
weight are considered to be close. Each sample xi is associated with a vertex vi. The weight
of an edge between xi and xj is given by the weight function or kernel wij = K(xi,xj).
The selected kernel should satisfy three properties:

• Symmetry: K(xi,xj) = K(xj ,xi)

• Non-negativity: K(xi,xj) ≥ 0

• Locality: there is a scale parameter ε such that if ‖xi−xj‖ � ε then K(xi,xj)→ 1,
and if ‖xi − xj‖ � ε then K(xi,xj)→ 0.

Note that such kernel functions encapsulate the notion of closeness between the data
points. Setting the scale parameter ε, similar to the choice of ε in ISOMAP, is important.
A small ε may lead to a disconnected graph, while a large ε may miss the underlying
geometry. The Gaussian kernel is one of the well known weight functions and its defined
as

K(xi,xj) = exp

(
−‖xi − xj‖2

2ε2

)
.

Using these kernel functions, the weight matrix is constructed.

Next, we construct a random walk Xt, t = 0, 1, 2, . . . on the vertices of the graph V =
{v1, . . . , vn} with transition matrix

M = (Mij)i,j=1,...,n with Mij =
wij

deg(i)
, 1 ≤ i, j ≤ n ,
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where W = (wij)1≤i,j≤n and deg(i) =
∑

j wij . This transition matrix represents the
probability of moving from the node vi at time t to vj at time t+ 1, namely

P(Xt+1 = j|Xt = i) = Mij .

The transition matrix M can be written as D−1W where D = diag(deg(1), . . . ,deg(n)).
Moreover, the conditional distribution of being at the vertex vj having started at the
vertex vi is given by

P(Xt = j|X0 = i) = (Mt)i,j , j = 1, . . . , n .

Then, the probability of being at each vertex after step time t starting from vi is given by

ith row of Mt = (M
(t)
ij )1≤i,j≤n. This distribution is

vi → eTi Mt = (M
(t)
i1 , . . . ,M

(t)
in ) .

Therefore, a vector of probabilities is assigned to each vertex vi. This vector contains
information about underlying geometry. If vi and vj are close - strongly connected in the
graph - then eTi Mt and eTj Mt will be similar.
However it is still not clear how this representation can be embedded in a low-dimensional
space. To do this, we focus on the spectrum of Mt. The transition M = D−1W is not
symmetric, however the normalized matrix S = D1/2MD−1/2 is symmetric, since S =
D1/2D−1WD−1/2 = D−1/2WD−1/2 and W is symmetric. The spectral decomposition of
S is then given by S = VΛVT , with Λ = diag(λ1, . . . , λn) eigenvalue matrix such that
λ1 ≥ · · · ≥ λn. Therefore, M can be written as

M = D−1/2VΛVTD1/2 = ΦΛΨT

where Φ = D−1/2V = (φ1, . . . ,φn) and Ψ = D1/2V = (ψ1, . . . ,ψn).
Note that Φ and Ψ are bi-orthogonal, i.e., ΦTΨ = In, or equivalently φTi ψj = δij . λk’s
are the eigenvalues of M with right and left eigenvectors φk and ψk, thus

Mφk = λkφk,ψ
T
kM = λkψ

T
k .

In summary, we have that

M =
n∑
k=1

λkφkψ
T
k

and hence

Mt =
n∑
k=1

λtkφkψ
T
k .

eTi Mt =
n∑
k=1

λtke
T
i φkψ

T
k =

n∑
k=1

λtkφk,iψ
T
k ,

Therefore, the distribution eTi Mt can be represented in terms of basis vectors ψk with
coefficients λtkφk,i for k = 1, . . . , n with φk = (φk,1, . . . , φk,n)T . These coefficients are used
to define the diffusion map.



4.3. DIFFUSION MAPS 37

Definition 4.5. The diffusion map at step time t is defined as:

φt(vi) =

λ
t
1φ1,i
...

λtnφn,i

 , i = 1, . . . , n

In the diffusion map, φk,i does not vary with t but each element is dependent on t via λti.
The eigenvalues of transition matrix therefore capture the main components of the data.
The following theorem provides some information about the eigenvalues of M.

Theorem 4.6. The eigenvalues λ1, . . . , λn of M satisfy |λk| ≤ 1. It also holds that
M1n = 1n and 1 is an eigenvalue of M.

Proof. Since M is an stochastic matrix, then the sum of each row elements is one, which
implies M1n = 1n. Let mk = (mk,1, . . . ,mk,n)T be the eigenvector corresponding to λk
and suppose that |mk,l| = max1≤j≤n |mk,j |, which means that |mk,j | ≤ |mk,l|. It can be
seen that

n∑
j=1

Mljmk,j = λkmk,l =⇒ |λk| ≤
n∑
j=1

Mlj
|mk,j |
|mk,l|

≤
n∑
j=1

Mlj = 1.

An interesting point is that λ1 = 1 and φ1 = 1n. Therefore the first element of the
diffusion map in above definition is always one for all points. Therefore we simply drop
this from the diffusion map and rewrite it as

φt(vi) =

λ
t
2φ2,i
...

λtnφn,i

 , i = 1, . . . , n.

It is possible to have more than one eigenvalues with absolute value equal to one. In this
case, the underlying graph is either disconnected or bipartite. If λk is small, λtk is rather
small for moderate t. This motivates truncating the diffusion maps to d dimensions.

Definition 4.7. The diffusion map truncated to d dimensions is defined as

φ
(d)
t (vi) =

 λt2φ1,i
...

λtd+1φn,i

 , i = 1, . . . , n

φ
(d)
t (vi) is an approximate embedding of v1, . . . , vn in a d−dimensional Euclidean space.

If the graph structure G(V,E,W) is appropriately chosen, non-linear geometries can also
be recovered using diffusion maps. The connection between the Euclidean distance in the
diffusion map coordinates (diffusion distance) and the distance between the probability
distributions is described in the following theorem [Ban08, Theorem 2.11].
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Theorem 4.8. For any pair of nodes vi and vj it holds that:

‖φt(vi)− φt(vj)‖2 =

n∑
l=1

1

deg(l)

(
P(Xt = l|X0 = i)− P(Xt = l|X0 = j)

)2
.

Proof. Exercise.



5 Classification and Clustering

Classification and clustering are one of the central tasks in machine learning. Given a set
of data points, the purpose is to classify the points into subgroups, which express closeness
or similarity of the points and which are represented by a cluster head.

5.1 Discriminant Analysis

Suppose that g populations/groups/classes C1, . . . , Cg are given, each represented by a
p.d.f. fi(x) on Rp, i = 1, . . . , g.

A discriminant rule divides Rp into disjoint regions R1, . . . , Rg, ∪pi=1Ri = Rp. The dis-
criminant rule is defined by

allocate some observation x to Ci if x ∈ Ri .

Often the densities fi(x) are completely unknown or its parameters, such as its mean
and variance, must be estimated from a training set x1, . . . ,xn ∈ Rp with known class
allocation. This setup, where a training set with known class allocation is given, is called
a “supervised” learning setup.

5.1.1 Fisher’s Linear Discriminant Function

Fisher’s linear discriminant function is a tool for supervised learning, where a training
set x1, . . . ,xn with known classification is given. When a new observation x with un-
known classification is obtained, a linear discriminant rule aTx is calculated such that x
is allocated to some class in an optimal way.

Hence, an appropriate linear transformation a ∈ Rp must be computed using the training
set. Particularly, in this analysis, a is chosen such that the ratio of the between-groups
sum of squares and the within group sum of squares is maximized. To formally define
this ratio, let X = [x1, . . . ,xn]T be samples from g groups C1, . . . , Cg. We as well define
Xl = [xj ]j∈Cl

and nl = |{j : 1 ≤ j ≤ n; j ∈ Cl}|. Then, the average of the training set is
given by

x =
1

n

n∑
i=1

xi ∈ Rp ,

and the average over the group Cl is given by

xl =
1

nl

∑
j∈Cl

xj ∈ Rp .

39
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Moreover, since a ∈ Rp is defined to be the linear discriminant of data, the vector y ∈ Rn
that stores the discriminant values of the vectors within the training set is given by

y =

y1
...
yn

 = XTa .

The discriminant values corresponding to the vectors of the training set, that belong to the
group Cl, are stored in yl = (yj)j∈Cl

. Similarly define the general average and between-
groups average as

y =
1

n

n∑
i=1

yi and yl =
1

nl

∑
j∈Cl

yj .

Note that

n∑
i=1

(yi − y)2 =

g∑
l=1

∑
j∈Cl

(yj − yl + yl − y)2

(a)
=

g∑
l=1

∑
j∈Cl

(yj − yl)2 +
∑
j∈Cl

(yl − y)2


=

g∑
l=1

∑
j∈Cl

(yj − yl)2 +

g∑
l=1

nl(yl − y)2

where (a) follows from a similar argument behind Steiner’s rule -Theorem 3.3. Finally,∑g
l=1

∑
j∈Cl

(yj − yl)2 is the sum of squares within groups and
∑g

l=1 nl(yl− y)2 is the sum
of squares between groups, so the problem of selecting the optimal a is formally defined.

To address this problem with compact notation, let En and Enl
= El, l = 1, . . . , g be

centering operators. Using matrix notation, we have

g∑
l=1

∑
j∈Cl

(yj − yl)2 =

g∑
l=1

yTl Elyl

=

g∑
l=1

aTXT
l ElXla

= aT (

g∑
l=1

XT
l ElXl)a = aTWa.
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where W =
∑g

l=1 XT
l ElXl. Similarly,

g∑
l=1

nl(yl − y)2 =

g∑
l=1

nl(a
T (xl − x))2

=

g∑
l=1

nla
T (xl − x)(xl − x)Ta

= aT

(
g∑
l=1

nl(xl − x)(xl − x)T

)
a = aTBa,

where B =
∑g

l=1 nl(xl − x)(xl − x)T . Then, the linear discriminant analysis requires
obtaining the a that solves

max
a∈Rp

aTBa

aTWa
(?)

Theorem 5.1. The maximum value of (?) is attained at the eigenvector of W−1B corre-
sponding to the largest eigenvalue.

Proof. Assuming a = W−1/2b, we have

max
a∈Rp

aTBa

aTWa
= max

b∈Rp

bTW−1/2BW−1/2b

bTb
= λmax(W−1/2BW−1/2),

where the last part results from Theorem 2.4. Furthermore W−1/2BW−1/2 and W−1B
have the same eigenvalues, since:

W−1Bv = λv ⇐⇒ W−1/2Bv = λW1/2v ⇐⇒ W−1/2BW−1/2W1/2v = λW1/2v.

Therefore the two matrices have the same eigenvalues. Moreover suppose that v is the
eigenvector of W−1B corresponding to λmax. Then we have

vTBv

vTWv
=

vTBv

vTW( 1
λmax

W−1Bv)
= λmax.

The linear function aTx is called Fisher’s linear discriminant function or the first canonical
variate. The ratio is invariant with the respect to scaling of a.

The application of the linear discriminant analysis is as follows.

• Given the training set x1, . . . ,xn ∈ Rp with known groups, compute the optimum a
from Theorem 5.1.

• For a new observation x, compute aTx.
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• Allocate x to the group with closest value of aTxl = yl. Discriminant rule can be
formulated as

Discriminant Rule: Allocate x to the group l if |aTx− aTxl| < |aTx− aTxj| for
all j = 1, . . . , l − 1, l + 1, . . . , g.

Fisher’s discriminant function is immediately relevant for the special case of g = 2, where
there are two groups of size n1 and n2 with n = n1 + n2. In this case we have

B = n1(x1 − x)(x1 − x)T + n2(x2 − x)(x2 − x)T

= n1(x1 −
n1

n
x1 −

n2

n
x2)(x1 −

n1

n
x1 −

n2

n
x2)T + n2(x2 −

n2

n
x2 −

n1

n
x1)(x2 −

n2

n
x2 −

n1

n
x1)T

= n1(
n2

n
x1 −

n2

n
x2)(

n2

n
x1 −

n2

n
x2)T + n2(

n1

n
x2 −

n1

n
x1)(

n1

n
x2 −

n1

n
x1)T

=
n1n

2
2

n2
(x1 − x2)(x1 − x2)T +

n2n
2
1

n2
(x1 − x2)(x1 − x2)T

=
n1n2

n
(x1 − x2)(x1 − x2)T =

n1n2

n
ddT ,

where d = x1 − x2. Therefore B has rank one and only one eigenvalue that is not equal
to 0. Therefore W−1B has only one non-zero eigenvalue, which is given by

tr(W−1B) =
n1n2

n
dTW−1d.

Since W is nonnegative definite, the above value is nonnegative and therefore is the
maximum eigenvalue. Note that d is an eigenvector of B. We have

(W−1B)W−1d = W−1(
n1n2

n
ddT )W−1d

=
n1n2

n
W−1d

(
dTW−1d

)
=
(n1n2

n
dTW−1d

)
W−1d.

Therefore, W−1d is an eigenvector of W−1B corresponding to the eigenvalue n1n2
n dTW−1d.

Then, the discriminant rule becomes

• Allocate x to C1 if dTW−1(x− 1
2(x1 + x2)) > 0.

a = W−1d is normal to the discriminating hyperplane between the classes.

One advantage of Fischer’s approach is that it is distribution free. It is based on the general
principle that the between-groups sum of squares is large relative to the within-groups sum
of squares, which measured by the quotient of these two quantities.
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5.1.2 Gaussian Maximum Likelihood (ML) Discriminant Rule

In general, the maximum likelihood rule allocates observation x to the class Cl which
maximizes the likelihood Ll(x) = maxj Lj(x). A Gaussian ML rule is the particular case
when the likelihood functions Ll(x) are Gaussian. Assume that the class distributions are
Gaussian and known as Np(µl,Σl) with µl and Σl fixed and with densities

fl(u) =
1

(2π)p/2|Σl|1/2
exp

{
−1

2
(u− µl)TΣ−1

l (u− µl)
}
,u ∈ Rp.

Then, the Gaussian ML discriminant rule would assign a given x to the class Cl that
maximizes fl(x) over l.

Theorem 5.2. The ML discriminant allocates x to class Cl which maximizes fl(x) over
l = 1, . . . , g.

(a) If Σl = Σ for all l, then the ML rule allocates x to Cl which minimizes the Mahalanobis
distance:

(x− µl)TΣ−1(x− µl).

(b) If g = 2, and Σ1 = Σ2 = Σ, then the ML rule allocates x to the class C1 if

αT (x− µ) > 0,

where α = Σ−1(µ1 − µ2) and µ = 1
2(µ1 + µ2).

Proof. Part (a) follows directly from the definition of ML discriminant rule. The ML
discriminant finds the class l such that:

l = arg max
1≤j≤g

fj(x).

Since Σ is fixed for all classes, the maximization of fl(x) amounts to maximization of
exponent which is minimization of the Mahalanobis distance. Part (b) is an exercise.

Note that the rule (b) is analogue to Fisher’s discriminant rule with parameters µ1, µ2

and Σ substituting estimates x1, x2 and W.
Application in practice: Σl and µl are mostly not known. One can estimate these
parameters from a training set with known allocations as Σ̂l and µ̂l for l = 1, . . . , g.
Substitute Σl and µl by their ML estimates Σ̂l and µ̂l and compute the ML discriminant
rule.
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5.2 Cluster Analysis

The aim of cluster analysis is to group n objects into g homogeneous classes. g is nor-
mally unknown, but usually assumed to be much smaller than n. Homogeneous means
that objects are close to each other. Members of different groups are significantly discrim-
inable. A certain metric is needed to define success. Note that this problem is a case of
unsupervised learning, since none of the n objects are known to belong to a certain group.

5.2.1 k−means Clustering

Given the training set x1, . . . ,xn ∈ Rp, the purpose of k−means Clustering is to partition
the data set into clusters C1, . . . , Cg with centers in each cluster u1, . . . ,ug as solution to:

min
C1,...,Cg ,u1,...,ug

k∑
l=1

∑
i∈Cl

‖xi − ul‖2

Since the optimization problem above is quite difficult to solve, the problem can be mod-
ified as the optimal centers are xl = 1

nl

∑
j∈Cl

xj ∈ Rp, when given the partition.

Algorithm 1 k−means algorithm - Lloyd’s algorithm

1: procedure k−means algorithm
2: repeat
3: Given centers u1, . . . ,ug, each point xi is assigned to cluster l = arg minj ‖xi−

uj‖2
4: update the centers ul = 1

nl

∑
i∈Cl

xi
5: until no more new data

The disadvantages of k−means clustering is that the number of clusters of g needs knowing
priori, and Euclidean space is needed as well. The iteration may end in sub-optimal
solutions which has always convex clusters. This is particularly difficult for the data
pattern in Figure 5.1. We discuss this clustering problem in the next part.

5.2.2 Spectral Clustering

To overcome these difficulties, when given the data set x1, . . . ,xn, a weighted graph could
be constructed G = (V,E,W), each point xi is a vertex vi, i = 1, . . . , n, and the edges
weights wi,j are wi,j = Kε(‖xi − xj‖) with kernel Kε, e.g., Kε(u) = exp(− 1

2εu
2). Here,

it should be noted that ‖xi − xj‖ can be substituted by any dissimilarity measure. Now,
lets consider a random walk with transition matrix

M = D−1W .
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Class 1
Class 2

Figure 5.1: Example where k-means clustering is sub-optimal.

We assume that this matrix is constructed using a diffusion map as in Section 4.3, thus

P(Xt+1 = j|Xt = i) =
wij

deg(i)
= Mij , (5.1a)

D = diag(deg(i)),deg(i) =

n∑
l=1

wil . (5.1b)

Therefore, M can be decomposed into

M = ΦΛΨT =

n∑
k=1

λkϕkψ
T
k , (5.2a)

Φ = (ϕ1, . . . , ϕn), Ψ = (ψ1, . . . , ψn) , (5.2b)

since M is a biorthonormal system with Φ(Ψ) as its right(left) eigenvectors. Then, Mt =∑n
k=1 λ

t
kϕkψ

T
k , with m

(t)
i,j denoting distribution of being in vertex j having started from i.

So the whole distribution of being having started from i can be denoted as

vi → eTi Mt =
n∑
k=1

λtkeiϕkψ
T
k =

n∑
k=1

λtkϕk,iψ
T
k

where λtkϕk,i are the coefficients, and ψTk the orthonormal basis.
If vi,vj are close or strongly connected, then eTi Mt and eTj Mt are similar. Moreover, this
diffusion map can be truncated to d dimensions,

Φ
(d)
t (i) =

 λt2ϕ2,i
...

λtd+1ϕd+1,i

 . (5.3)
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Algorithm 2 Spectral Clustering Algorithm

1: procedure Spectral Clustering
2: Given a graph G = (V,E,W), k denotes number of clusters, and time t
3: compute the (k − 1)dimension diffusion map

Φ
(k−1)
t (i) =

λ
t
2ϕ2,i

...
λtkϕk,i


4: cluster Φ

(k−1)
t (1), . . . ,Φ

(k−1)
t (n) ∈ Rk−1 using, eg, k-means clustering

The aim of spectral clustering is to cluster vertices of the graph into k clusters, as sum-
marized in algorithm 2.

Particularly for two the case of clusters C and Cc we have that

Φ
(1)
t ∈ R1, i = 1, . . . , n

will be on a line (Φ
(1)
t is 1-dimensional, i.e., a scalar). Then, a natural way of clustering

on a line is to define a threshold q such that vi ∈ C if Φ
(1)
t (i) 6 q. For example, for 5

points we would get 1D clustering problem as the one shown in Figure 5.2.

q

Φ
(4)
2 Φ

(5)
2 Φ

(2)
2

Φ
(3)
2

Φ
(1)
2

|

Figure 5.2: Example of spectral clustering with 2 classes and 5 points.

5.2.3 Hierarchical Clustering

Another type of unsupervised clustering algorithms are the hierarchical clustering meth-
ods. Hierarchical clustering algorithms are mainly divided into agglomerative (bottom up)
and divisive (top down) clustering. Agglomerative methods assign a cluster to each obser-
vation and then reduce the number of clusters by iteratively merging smaller clusters into
larger ones. On the other hand, divisive methods start with one large cluster containing
all the observations and iteratively divide it into smaller clusters.

Since the principles behind agglomerative and divisive clustering are quite analogous,
in this lecture we only explain agglomerative algorithms. To this end, given n objects
v1, . . . ,vn and pairwise dissimilarities δi,j = δj,i,∆ = (δi,j) i, j = 1, . . . , n, a linkage
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function between two clusters C1, C2 is defined as

d(C1, C2) =


mini∈C1,j∈C2

δi,j single linkage

maxi∈C1,j∈C2
δi,j complete linkage

1
|C1||C2|

∑
i∈C1,j∈C2

δi,j average linkage

. (5.4)

Then, as summarized in algorithm 3, an agglomerative clustering algorithm builds larger
clusters by merging similar clusters as we move up the hierarchy (see Figure 5.3). Note
that algorithm 3 merges clusters until we are left with a single cluster containing all
observations. In practice, we can stop iterating once the desired amount of clusters is
reached.

Algorithm 3 Agglomerative Clustering

1: procedure Agglomerative Clustering
2: Initialize clusters as singletons: for i = 1, . . . , n do Ci ← i
3: Initialize the set of clusters available for merging as S ← {1, . . . , n}
4: repeat
5: Pick the two most similar clusters to merge: (j, k)← arg minj,k∈S d(Cj , Ck)
6: Merge Ck into Cj as Cj ← Cj

⋃
Ck

7: Mark k as unavailable, S ← S − {k}
8: If Cj = {1, . . . , n}, then mark j as unavailable, S ← S − {j}.
9: for each i ∈ S do update dissimilarities d(Ci, Cj)

10: until no more clusters are available for merging
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{v1} {v2} {v3} {v4} {v5}

{v1,v2} {v3} {v4} {v5}

{v1,v2} {v3,v4} {v5}

{v1,v2} {v3,v4,v5}

{v1,v2,v3,v4,v5}

5 clusters (initial state)

4 clusters

3 clusters

2 clusters

1 cluster

Figure 5.3: Graphical example of agglomerative clustering with 5 points (n = 5).



6 Support-Vector Machines

Given a training set {(x1, y1), . . . , (xn, yn)}, xi ∈ Rp are data points belonging to two
different classes or groups. The class membership is indicated by yi ∈ {−1, 1}.
The key idea is to select a particular hyperplane that separates the points in the two classes
and maximizes the margin, i.e., the distance between the hyperplane and the closest points
of the training set from each class.

The basic concept is drafted in Fig. 6.1.

{yi = 1}

{yj = −1}

Figure 6.1: Potential separating hyperplanes (dashed, cyan) and the margin optimizing
one (solid, black).

Support-Vector Machines are a set of learning methods used for classification, regression
and outlier detection. They are among the best “off-the-shelf“ supervised learning al-
gorithms, if not even the best. Since only support-vectors are used for decisions SVMs
are also memory efficient. They perform extremely effective if the number of dimensions
is high, even in cases where the number of samples is smaller than the number of di-
mensions. The application of so called kernel functions is a way to generalize SVMs to
nonlinear decision patterns, which makes SVMs very flexible and versatile.

49
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6.1 Hyperplanes and Margins

We commence by briefly considering the representation of hyperplanes and half-spaces in
Rp.
Suppose that a ∈ Rp and b ∈ R are given.

a) Given a ∈ Rp

{x ∈ Rp | aTx = 0}

is the (p− 1)-dimensional linear subspace orthogonal to a.

a

{x | aTx = 0}

b) Given a ∈ Rp and b ∈ R
{x ∈ Rp | aTx− b = 0}

is the linear space shifted by the vector b
‖a‖2 a. This holds since aTx − b = 0 if and

only if aTx− aT a
‖a‖2 b = 0 if and only if aT

(
x− b

‖a‖2 a
)

= 0.

Hence, a linear space shifted by b
‖a‖2 a, is a hyperplane of distance b

‖a‖ from {aTx =

0}.

{x | aT (x− b
‖a‖2a) = 0}

a
b

‖a‖2a

c) Given a ∈ Rp and b ∈ R
{x ∈ Rp | aTx ≥ b}

represents a half-space of points lying on one side of the corresponding hyperplane.
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d) Given a ∈ Rp, b1, b2 ∈ R, the distance between two hyperplanes is required H1 =
{aTx− b1 = 0} and H2 = {aTx− b2 = 0}.

Both hyperplanes are parallel and orthogonal to a. Pick x1 and x2 such that:

x1 = λ1a, x2 = λ2a

aTx1 − b1 = 0, aTx2 − b2 = 0.

Then:

λ1a
Ta− b1 = 0, λ2a

Ta− b2 = 0

λ1‖a‖2 − b1 = 0, λ2‖a‖2 − b2 = 0

λ1 =
b1
‖a‖2 , λ2 =

b2
‖a‖2 .

See that x1 − x2 is orthogonal to both hyperplanes and therefore the norm of this
vector gives the distance between the two hyperplanes:

‖x1 − x2‖ = ‖λ2a− λ1a‖ = |λ1 − λ2|‖a‖

=

(
b2
‖a‖2 −

b1
‖a‖2

)
‖a‖ =

|b2 − b1|
‖a‖ .

Hence the distance between parallel H1 and H2 is:

1

‖a‖|b1 − b2|.
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e) Given a ∈ Rp, b ∈ R and x0 ∈ Rp, the distance between the hyperplane H1 = {x |
aTx− b = 0} and the point x0 is required.

Consider the auxiliary hyperplane containing x0:

H0 = {x | aTx− b0 = 0} = {x | aTx− aTx0 = 0}.

Note that b0 = aTx0 since aTx0−b0 = 0. By the previous step, the distance between
H and H0 is:

1

‖a‖|b− aTx0|.

The distance is called the margin of x0.

A hyperplane {x ∈ Rp | aTx = b} is separating points of two classes, if one group is
contained in the half-space {x ∈ Rp | aTx ≥ b} and the other group in {x ∈ Rp | aTx ≤ b},
see Fig. 6.1. The minimum distance from points to the separating hyperplane is called
margin. Our aim is to find a hyperplane which maximizes the margin.

6.2 The Optimal Margin Classifier

We now set out to formulate an optimization problem that will give us the separating
hyperplane with maximum margins. Given a training set

{(x1, y1), . . . , (xn, yn)}, xi ∈ Rp, yi ∈ {−1, 1},

assume there exists a separating hyperplane

{x ∈ Rp | aTx + b = 0}.

Then for some γ ≥ 0 and for all i = 1, . . . , n, we have:

yi = +1 =⇒ aTxk + b ≥ γ
yi = −1 =⇒ aTxk + b ≤ −γ.

Hence
yi
(
aTxi + b

)
≥ γ for some γ ≥ 0, for all i = 1, . . . , n.
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The minimum margin of the members of each class from the separating hyperplane is
given by

1

‖a‖γ.

The objective is to find a separating hyperplane such that this minimum margin is maxi-
mum.

max
γ,a,b

γ

‖a‖ s.t. yi
(
aTxi + b

)
≥ γ for all i = 1, . . . , n.

This problem is scale invariant. In other words if (γ,a, b) is a solution so is (2γ, 2a, 2b).
Therefore a normalization by γ leads to the following formulation

min
γ,a,b
‖a
γ
‖ s.t. yi

(
(
a

γ
)Txi +

b

γ

)
≥ 1 for all i = 1, . . . , n

⇐⇒ min
a,b
‖a‖ s.t. yi

(
aTxi + b

)
≥ 1 for all i = 1, . . . , n

⇐⇒ min
a,b

1

2
‖a‖2 s.t. yi

(
aTxi + b

)
≥ 1 for all i = 1, . . . , n.

This leads to the optimization problem for finding Optimal Margin Classifier (OMC):

min
a∈Rp, b∈R

1

2
‖a‖2

such that yi
(
aTxi + b

)
≥ 1, i = 1, . . . , n.

(OMC)

This is a quadratic optimization problem with linear inequality constraints, a special case
of a convex general optimization problem.

• Assume a∗ is an optimal solution of (OMC) and a nearest support point xk and x`
from each class is known, as will become clear later from duality theory, then

a∗Txk + b = 1,

a∗Tx` + b = −1.

Hence
a∗Txk + a∗Tx` + 2b = 0

yielding

b∗ = −1

2
a∗T
(
xk + x`

)
(6.1)

as the optimum b-value.

Even using a single point xk satisfying yk(a
∗Txk + b∗) = 1 is enough to obtain b∗ as

yk(a
∗Txk + b∗) = 1

⇐⇒ a∗Txk + b∗ = yk (since y2
k = 1)

⇐⇒ b∗ = yk − a∗Txk.
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{aTx+ b = 0}

{aTx+ b = 1}

{aTx+ b = −1}

a

x̂ℓ

xk

x̂k

1
‖a‖

xℓ

Figure 6.2: The margin maximizing hyperplane (solid, black) and its parallel sisters.

• The solution (a∗, b∗) is called the optimal margin classifier.

• It can be solved by commercial or public domain generic quadratic programming
(QP) software.

Is the problem completely solved by now? Yes and no. We can do better by applying
Lagrange duality theory. By this we not only get the optimum solution efficiently but also
identify all support points. Moreover, a simple decision rule can be derived, which only
depends on the support points. Moreover the case of non-separable data should also be
considered.

6.3 SVM and Lagrange Duality

Let’s start with the brief excursion on convex optimization.

• Normally a convex optimization problem can be formulated as,

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.

hj(x) = 0, j = 1, . . . , p

where f0(x) and fi(x) are convex and hj(x) are linear.
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• Lagrangian function is derived from primal optimization problem:

L(x,λ,υ) = f0(x) +

m∑
i=1

λifi(x) +

p∑
j=1

υjhj(x).

• Lagrangian dual function is defined as the infimum of Lagrangian function:

g(λ,υ) = inf
x∈D

L(x,λ,υ) (6.2)

D =
m⋂
i=0

dom(fi) ∩
p⋂
j=0

dom(hj) (6.3)

The Lagrangian dual function is a concave function.

• The Lagrange dual problem is derived as follows,

maximize g(λ,υ)

subject to λ ≥ 0.
(6.4)

• Suppose that λ∗,υ∗ are the optimal solutions of Lagrangian duality problem, and x∗

is the optimal solution of primal optimization problem. The weak duality theorem
states that

g(λ∗,υ∗) ≤ f0(x∗).

The strong duality holds if

g(λ∗,υ∗) = f0(x∗).

• If the constraints are linear then ”the Slater’s condition“ holds, which implies that
g(λ∗,υ∗) = f0(x∗), i.e., strong duality holds, i.e., and therefore the duality gap is
zero.

• If strong duality holds, then

f0(x∗) = g(λ∗,υ∗)

= inf
x

(
f0(x) +

m∑
i=1

λ∗i fi(x) +

p∑
i=1

υ∗i hi(x)

)

≤ f0(x∗) +

m∑
i=1

λ∗i fi(x
∗) +

p∑
i=1

υ∗i hi(x
∗)

≤ f0(x∗),

since λ∗i ≥ 0, fi(x
∗) ≤ 0 and hi(x

∗) = 0. Hence, equality holds everywhere such that

(i) x∗ minimizes L(x,λ∗,υ∗),
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(ii) λ∗i fi(x
∗) = 0, i = 1, . . . ,m (Complementary slackness), i.e.,

λ∗i > 0 =⇒ fi(x
∗) = 0

fi(x
∗) < 0 =⇒ λ∗i = 0.

• Karush-Kuhn-Tucher conditions (KKT) is defined by

1. fi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , p (primal constraints)

2. λi ≥ 0, i = 1, . . . ,m (dual constraints)

3. λifi(x) = 0, i = 1, . . . ,m (complementary slackness)

4. ∇xL(x,λ,υ) = 0

Theorem 6.1. If slater’s condition is satisfied then the strong duality holds. If in addition
fi, hj are differentiable, then for x∗, (λ∗, υ∗) to be primal and dual optimal, it is necessary
and sufficient that the KKT condition holds.

We can see the application to SVM. For example, given training set {(x1, y1), . . . , (xn, yn)},
xi ∈ Rp, yi ∈ {−1, 1}. The primal optimization problem is given by

min
a∈Rp,b∈R

1

2
‖a‖2

s.t yi(a
Txi + b) ≥ 1, i = 1, . . . , n

(6.5)

The Lagrangian function writes as

L(a, b,λ) =
1

2
‖a‖2 −

n∑
i=1

λi(yi(a
Txi + b)− 1)

∂(a, b,λ)

∂a
= a−

n∑
i=1

λiyixi = 0 =⇒ a∗ =

n∑
i=1

λiyixi,

∂(a, b,λ)

∂b
=

n∑
i=1

λiyi = 0 =⇒
n∑
i=1

λiyi = 0

Dual function writes as

g(λ) = L(a∗, b∗,λ) =
1

2
‖a∗‖2 −

n∑
i=1

λi(yi(a
∗Txi + b∗)− 1)

=
n∑
i=1

λi +
1

2
(
n∑
i=1

λiyixi)
T (

n∑
j=1

λjyjxj)−
n∑
i=1

λiyi(
n∑
j=1

λjyjxj)
Txi −

n∑
i=1

λiyib
∗

=
n∑
i=1

λi −
1

2

∑
i,j

yiyjλiλjx
T
i xj
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Finally the dual problem can be obtained as

max
λ

g(λ) =

n∑
i=1

λi −
1

2

∑
i,j

yiyjλiλjx
T
i xj

s.t λi ≥ 0
n∑
i=1

λiyi = 0

((DP))

If λ∗i ’s are the solution of the dual problem, then a∗ =
∑n

i=1 λ
∗
i yixi and b∗ = yk − a∗Txk

with xk are some support vector. The Slater’s condition is also satisfied, so strong duality
holds. From KKT for optimal λ∗ complementary slackness follows

λ∗i (yi(a
∗Txi + b∗)− 1) = 0, i = 1, . . . , n

Hence

λ∗i > 0 =⇒ yi(a
∗Txi + b∗) = 1 (6.6)

λ∗i = 0 =⇒ yi(a
∗Txi + b∗) ≥ 1 (6.7)

λ∗i > 0 indicates supporting vectors, those which have smallest distance to the separating
hyperplane. After solving ((DP)) the support vectors are determined by λ∗i > 0.

Let S = {i|λ∗i > 0}, S+ = {i ∈ S|yi = +1} and S− = {i ∈ S|yi = −1}. Then

a∗ =
∑
i∈S

λ∗i yixi

b∗ = −1

2
a∗T (xk + xl), k ∈ S+, l ∈ S−

SVM can be then simply stated as follows

• Training set {(x1, y1), . . . , (xn, yn)}.

• Determine λ∗ and a∗, b∗

• For each new point x, to find class label y ∈ {−1, 1}, first compute

d(x) = a∗Tx + b∗ = (
∑
i∈S

λ∗i yixi)
Tx + b∗ =

∑
i∈S

λ∗i yix
T
i x + b∗

and then predict y = 1, if d(x) ≥ 0, otherwise y = −1.

Remarks:

• |S| is normally much less than n.

• The decision only depends on the inner products xTi x for support-vectors xi, i ∈ S.
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Figure 6.3: A linearly non-separable dataset

6.4 Robustness and Non-separability

So far, the assumption that there exists a separating hyperplane between two classes.
What happens if not? For example, the points in Fig. 6.3 are not linearly separable.
Moreover the optimum margin classifier is sensitive to outliers. Outliers cause drastic
swing of the optimal margin classifier.

Both problems are addressed by the following approach: `1-regularization.

min
a∈Rp,b,ξ

1

2
‖a‖2 − c

n∑
i=1

ξi

s.t yi(a
Txi + b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

(6.8)
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For the optimal solution a∗, b∗, it is allowed that margins are less than 1
‖a∗‖ , i.e.,

yi(a
∗Txi + b∗) ≤ 1.

If yi(a
∗Txi + b∗) = 1 − ξi, ξi > 0, then a cost of cξi is paid. Parameter c controls the

balance between the two goals in (6.8).
Lagrangian for (6.8) is given by:

L(a, b, ξ,λ,γ) =
1

2
‖a‖2 + c

n∑
i=1

ξi −
n∑
i=1

λi(yi(a
Txi + b)− 1 + ξi)−

n∑
i=1

γiξi

where γi, λi’s are Lagrangian multipliers. Analogously to the above, obtain the dual
problem as

max
λ

n∑
i=1

λi −
1

2

∑
i,j

yiyjλiλjx
T
i xj

s.t 0 ≤ λi ≤ c
n∑
i=1

λiyi = 0

(6.9)

Let λ∗i be the optimum solution of (6.9). As before, let S = {i|λ∗i > 0}. Corresponding
xi’s are called support vectors. Then a∗ =

∑
i∈S λ

∗
i yixi is the optimum a.

Complementary slackness conditions are

λi = 0 =⇒ yi(a
∗Txi + bi) ≥ 1 (6.10)

λi = c =⇒ yi(a
∗Txi + bi) ≤ 1 (6.11)

0 < λi < c =⇒ yi(a
∗Txi + bi) = 1 (6.12)

(6.13)

If 0 < λk < c for some k (xk support vector), then b∗ = yk−a∗Txk providing the optimum
b.
Also it is possible to pick two support vectors xk and x` with yk = +1 and y` = −1, then

b∗ = yk − a∗Txk

b∗ = y` − a∗Tx`

}
=⇒ 2b∗ = −a∗T (xk + x`),

hence b∗ = −1
2a∗T (xk + x`) is the optimum b.

To classify a new point x ∈ Rp, there are two classifiers.

• Hard classifier: first compute:

a∗Tx + b∗ = (
∑
i∈S

λ∗i yixi)
Tx + b∗ =

∑
i∈S

λ∗i yix
T
i x + b∗ = d(x).

Decide y = 1 if d(x) ≥ 0, otherwise y = −1.
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• Soft classifier: Compute d(x) = h(a∗Tx + b∗) where

h(t) =


−1, t < −1
t, −1 ≤ t ≤ +1

+1, t > 1
(6.14)

d(x) is a real number in [−1,+1] if a∗Tx + b∗ ∈ [−1,+1], i.e., if x is residing in the
overlapping area.

Both classifiers only depend on the inner products xTi x = 〈xi,x〉 with support vectors
xi, i ∈ S.

6.5 The SMO Algorithm

The Sequential Minimal Optimization (SMO) algorithm is an algorithm to solve the dual
problem, which is given as

max
λ

W (λ) =

n∑
i=1

λi −
1

2

∑
i,j

yiyjλiλjx
T
i xj

s.t. 0 ≤ λi ≤ c
n∑
i=1

λiyi = 0.

(6.15)

Assume λ is a feasible point, i.e., λ satisfies the constraints. Note that cyclic coordinate
optimization does not work, since, e.g.,

λ1y1 = −
n∑
i=2

λiyi or λ1 = −y1

n∑
i=2

λiyi.

Hence each λj is determined by fixing λi, i 6= j. The idea is to update at least two λj
simultaneously, which is SMO algorithm.

Algorithm 4 SMO algorithm

1: procedure SMO
2: repeat
3: 1. Select a pair (i, j) to be updated next, the one which promises the most

progress
4: 2. Optimize W (λ) w.r.t. λi and λj while keeping λk, k 6= i, j, fixed.
5: until Convergence

One can check KKT within a tolerance limit ε = 0.01 or 0.001, to verify Convergence.
Optimize W (λ) w.r.t. λ1, λ2 with λ3, . . . , λn fixed and λ feasible. It holds

λ1y1 + λ2y2 = −
n∑
i=3

λiyi = ζ, ζ fixed.
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Derive the following:

0 ≤ λ1, λ2 ≤ c
L ≤ λ2 ≤ H.

(6.16)

Moreover:

λ1 = y1(ζ − λ2y2). (6.17)

HenceW (λ1, . . . , λn) = W (y1(ζ−λ2y2), λ2, λ3, . . . , λn︸ ︷︷ ︸
fixed

) and therefore the objective function

turns out to be a quadratic function of λ2 and it can be written as :

γ2λ
2
2 + γ1λ2 + γ0.

Determine the maximum by differentiation:

2γ2λ2 + γ1 = 0 =⇒ λ2 = − γ1

2γ2

with optimum solution λ
(r)
2 . The final solution, following (6.16), is

λ
(c)
2 =


H if λ

(r)
2 > H

λ
(r)
2 if L ≤ λ(r)

2 ≤ H
L if λ

(r)
2 < L

(6.18)

λ1 is computed using (6.17).

It still remains to clarify:

• What is the best choice of the next pair (i, j) to update?

• How to update the coefficients γ0, γ1, γ2 in the run of SMO.

• The algorithm converges, however, the right choice of (i, j) in each step accelerates
the rate of Convergence.

• Generalization of SMO algorithm [OFG97]

6.6 Kernels

Instead of applying SVM to the raw data (”attributes”) xi, one can apply it to transformed
data (”features”) Φ(xi). The function Φ is called feature mapping. The aim of kernels is
to achieve better separability.



62 CHAPTER 6. SUPPORT-VECTOR MACHINES

Consider the dual SVM problem.

max
λ

g(λ) =
n∑
i=1

λi −
1

2

∑
i,j

yiyjλiλjx
T
i xj

s.t. 0 ≤ λi ≤ c
n∑
i=1

λiyi = 0.

(6.19)

g(λ) only depends on the inner products xTi xj . Substitute xi by Φ(xi) and use the same
inner product 〈, 〉. Replace xTi xj by,

〈Φ(xi),Φ(xj)〉 = K(xi,xj).

In other words, the inner product of the features are given by the function K(xi,xj). Note
that K(xi,xj) is often easier to compute than Φ(x) itself.

The intuition why we need kernels is that if Φ(x),Φ(y) are close, 〈Φ(x),Φ(y)〉 is large.
If Φ(x) ⊥ Φ(y) then 〈Φ(x),Φ(y)〉 = 0. Hence, K(xi,xj) measures how similar x and y
are. What is needed for Kernel based methods is an inner product in some feature space
{Φ(x)|x ∈ Rp}.

Example. Given x, z ∈ Rp define the Kernel functions as

K(x, z) = 〈x, z〉2 =

(
p∑
i=1

xizi

)2

The question is whether there is some function Φ such that 〈x, z〉2 is an inner product
in the feature space. Let p = 2 and x = (x1, x2)T and z = (z1, z2)T . Use Φ(x) =
(x2

1, x
2
2,
√

2x1x2) : R2 −→ R3. Then

〈Φ(x),Φ(z)〉 = x2
1z

2
1 + x2

2z
2
2 + 2x1x2z1z2

= (x1z1 + x2z2)2 = 〈x, z〉2.
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Example. (Gaussian Kernel) Given x, z ∈ Rp, the kernel is defined as

K(x, z) = exp(−‖x− z‖2
2σ2

)

Question: is there a feature mapping Φ and a feature space with inner product specified
as above?

Definition 6.2. Kernel K(x, z) is called valid, if there exists a feature Φ such that
K(x, z) = 〈Φ(x),Φ(z)〉 for all x, z ∈ Rp

Theorem 6.3 (Mercer’s theorem). Given K : Rp × Rp −→ R, K is a valid kernel if and
only if for any {x1, . . . ,xn} the kernel matrix (K(xi,xj))i,j=1,...,n is nonnegative definite.

Proof. (Only =⇒) If K is valid then there exists a function Φ such that:

K(xi,xj) = 〈Φ(xi),Φ(xj))〉 = 〈Φ(xj),Φ(xi)〉 = K(xj ,xi)

Moreover,

zT (K(xi,xj))i,jz =
∑
k,l

zkzl〈Φ(xk),Φ(xl)〉 = 〈
∑
k

zkΦ(xk),
∑
l

zlΦ(xl)〉 ≥ 0.

Example. (Polynomial Kernel) Consider the following kernel:

K(x, z) = (xT z + c)d,x, z ∈ Rp, c ∈ R, d ∈ N, d ≥ 2.

Feature space of this kernel is of dimension
(
p+d
d

)
, containing all monomials of degree less

that or equal to d.
(Exercise: Determine Φ(x).)

Kernels can also be constructed over infinite dimensional spaces,e.g, function space or
probability distributions, providing a lot of modeling power. The solution of the optimal
problem is still a convex problem with linear constraints.





7 Machine Learning

Recently, machine learning has captured the attention in many fields and been utilized
in different applications, such as voice, image recognition and stock market prediction.
Machine learning can be best defined as a set of methods which are able to extract infor-
mation or pattern from a given data in order to learn and understand the system under
consideration, and if necessary predict its future behavior [Mur12]. However, to ensure
reliable functionalities, proper learning algorithms have to be considered based on the
problem in hand.

7.1 Supervised Learning

Given the pair (xi, yi), with i = 1, . . . , n, the set

{(xi, yi) | i = 1, . . . , n}
is called the training set of n ∈ N number of training examples, where xi ∈ X is known as
the input or feature variable, and yi ∈ Y as the output or target variable. Via supervised
learning approach, machine learning algorithms utilize such a training set to determine a
function or a hypothesis

h : X −→ Y,
such that h(xi) is a “good” predictor of yi. Once the learning is over, i.e, the parameters
of the function h is determined, it can be utilized to test or identify new samples. Based
on the nature of yi, the problem is

• a regression one, if Y is continuous, or

• a classification one, if Y is discrete.

7.1.1 Linear Regression

Given the training set {(xi, yi) | i = 1, . . . , n}, where xi ∈ Rp, and yi ∈ R. The linear
function

yi = ν0 + x1ν1 + · · ·+ xpνp + εi

= (1,xTi )ν + εi,

is considered a linear regression model, where εi ∈ R is a random error. Hence, the learning
function is represented by hν(x) = (1,xT )ν, where ν = (ν0, . . . , νp)

T are the regression
parameters. Thus, the regression problem can be redefined as

y = Xν + ε, (7.1)

65
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where

Xn×(p+1) =

1 xT1
...

...
1 xTn

 , y = (y1, . . . , yn)T , and ε = (ε1, . . . , εn)T .

In (7.1), the best ν, denoted by ν?, is required to be obtained by solving the minimization
problem

min
ν∈Rp+1

‖y −Xν‖, (7.2)

The solution can be performed in the following steps.

1. Find ŷ by projecting y onto Im(X)

The term X(XTX)−1XT is an orthogonal projection onto Im(X), provided the in-
verse (XTX)−1 exists. Note that the inverse (XTX)−1 must exist, however if not,
replace (XTX)−1 by the so-called Moore-Penrose-inverse (XTX)+.
Thus,

ŷ = arg min
z∈Im(X)

‖y − z‖

= X(XTX)−1XTy.

2. Find ν such that ŷ = Xν

ŷ = Xν

X(XTX)−1XTy = Xν

multiplying both sides by XT results

XTy = XTXν.

Thus,

ν? = (XTX)−1XTy

and,

Xν? = X(XTX)−1y = ŷ.

As an exercise, prove that X(XTX)−1XT is the orthogonal projection onto ImX, provided
that (XTX)−1 exists.

Example. A 1-dimensional regression problem: Figure 7.1 shows a 1-dimensional regres-
sion problem, which can be formulated as follows.

yi = ν0 + ν1xi + εi, for i = 1, . . . , n.
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yi

xi

Figure 7.1: A 1-D regression problem.

Find the regression parameters ν0 and ν1.

Solution: Given that

X =

1 x1
...

...
1 xn

 , and, ν =
(
ν0, ν1

)T
,

the term XTX is obtained as

XTX =

(
1 . . . 1
x1 . . . xn

)1 x1
...

...
1 xn


=

(
n

∑
i xi∑

i xi
∑

i x
2
i

)
,

hence

(XTX)−1 =
1

n
∑

i x
2
i − (

∑
i xi)

2

( ∑
i x

2
i −∑i xi

−∑i xi n

)
=

1
n2

1
n

∑
i x

2
i − ( 1

n

∑
i xi)

2

( ∑
i x

2
i −∑i xi

−∑i xi n

)
=

1

n

1

x2 − x2

(
x2 −x
−x 1

)
.
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Thus,

ν? =

(
ν?0
ν?1

)
= (XTX)−1XT y

=
1

n

1

x2 − x2

(
x2 −x
−x 1

)(
ny∑
i xiyi

)
=

1

σ2
x

(
x2 −x
−x 1

)(
y
pxy

)
=

1

σ2
x

(
x2 y − x px y
−x y + p x y

)
=

1

σ2
x

(
x2 y − x px y

σxy

)
.

Hence, the regression parameters for a 1-dimensional problem can be directly calculated
as

ν?1 =
σxy
σ2
x

,

and

ν?0 = y − ν?1x,

where,

x̄ =
1

n

∑
i

xi,

ȳ =
1

n

∑
i

yi,

σxy =
1

n

∑
i

xiyi − x̄ȳ,

σx2 =
1

n

∑
i

x2
i − x̄2.

Prove as an exercise, that

ν?0 = y − ν?1x

=
1

σ2
x

(x2 y − p x yx).

7.1.2 Logistic Regression

The concept of regression can be extended for binary classification problems, i.e., problems
where the output variable y can be either 0 or 1. Correspondingly, the hypothesis is give
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by

hν(x) = g(νTx) =
1

1 + E(−νTx)
∈ [0, 1], (7.3)

where g(z) = 1
1+E(−z) is called the logistic or sigmoid function. Figure 7.2 represents the

logistic function g(z) for values z ∈ [−5, 5]. As an exercise, prove that the statement
g′(z) = g(z)(1− g(z)) holds.

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.25

0.5

0.75

1

Figure 7.2: The logistic or sigmoid function g(z) for z ∈ [−5, 5].

Given the training set {(xi, yi) | i = 1, . . . , n} training samples, where xi ∈ Rp and
yi ∈ {0, 1}. Similar to the linear regression, we set xi,0 = 1, subject to

νTx = ν0 +

p∑
j=1

νjxj , where x = (1, x1, . . . , xp).

Probabilistic Interpretation of Logistic Regression

The posterior probability of class y = 1 is interpreted via the logistic function, such that

P(y = 1|x,ν) = hν(x)

P(y = 0|x,ν) = 1− hν(x).

In other words, the posterior probability can be written as

P(y = 1|x,ν) = (hν(x))y (1− hν(x))1−y, y ∈ {0, 1}.
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Assuming n ∈ N independent training samples, such that

X =

1 xT1
...

...
1 xTn

 ∈ Rn×(p+1)

or equivalently X = (xi,j)1≤i≤n
0≤j≤p

. The corresponding likelihood function is given as

L(ν) = P(y|X,ν) =

n∏
i=1

P(yi|xi,ν)

=

n∏
i=1

(hν(xi))
yi(1− hν(xi))

1−yi ,

and the log-likelihood as

`(ν) = logL(ν)

=
n∑
i=1

yi log hν(xi) + (1− yi) log(1− hν(xi)). (7.4)

In order to estimate of the logistic regression parameters ν, the following objective function
is considered

max
ν∈Rp+1

`(ν).

For this matter, the gradient ascent optimization has been considered. The (k + 1)th

update of the logistic parameters, denoted by ν(k+1), are given by

ν(k+1) = ν(k) + α∇ν `(ν(k)),

where α is the learning parameters. By setting (xi, yi) = (x, y), with

x =


x0

x1
...
xp

 =


1
x1
...
xp

 ,

and for each addent in (7.4), ∇ν is calculated as

∂

∂νj

[
y log hν(x) + (1− y) log(1− hν(x))

]
= A(ν,x)

∂

∂νj
g(νTx)

= A(ν,x)g(νTx)(1− g(νTx))
∂

∂νj
νTx

=
(
y(1− g(νTx))− (1− y)g(νTx)

)
xj

= (y − hν(x))xj ,
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where

A(ν,x) = y
1

g(νTx)
− (1− y)

1

1− g(νTx)
,

and

xj =


1
x1,j

...
xp,j

 .

Hence,

∂

∂νj
`(ν) =

n∑
i=1

(yi − hν(xi))xi,j ,

with the update rule

ν
(k+1)
j := ν

(k)
j + α

n∑
i=1

(yi − hν(xi))xi,j .

Alternative approach: using Newton’s method. The parameter updates are hence given
by

ν(k+1) := ν(k) −H−1∇ν `(ν),

where H is the Hessian matrix.

Furthermore, as (7.3) is utilized to represent the posterior probability, such that

P(y|x,ν) = (hν(x))y (1− hν(x))1−y, y ∈ {0, 1},

hence it can be interpreted via the Bernoulli distribution, as

f(k) = pk(1− p)1−k,

where p ∈ (0, 1), k ∈ {0, 1}, and f(k) is given by

f(k) = E(k log p+ (1− k) log(1− p))
= E(k log

p

1− p + log(1− p))

= E(k log
p

1− p)E(1− p),

with log p
1−p = q ⇔ p = 1

1+E(−p) .
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7.1.3 The Perceptron Learning Algorithms

Another approach for binary classification method is via the Perceptron learning algorithm.
The function hν(x) = g(νTx) forces the output variable y to be either 0 or 1, i.e, y = {0, 1},
as

g(z) =

{
1 if z ≥ 0

0 if z < 0,

unlike the logistic regression, where g(z) ∈ [0, 1]. In analogy to the logistic regression, the
update rule is given by

ν
(k+1)
j := ν

(k)
j +

n∑
i=1

α(yi − hν(xi))xi,j ,

where i = 1, . . . , n and j = 1, . . . , p + 1. The perceptron algorithm is considered to be
a rough model of how neurons in the human brain works. Thus, it is one of the initial
artificial neural networks with a probabilistic interpretation, without the need of MLE.

7.2 Reinforcement Learning

So far, the presented machine learning algorithms employ supervised learning methods,
i.e., they rely on having a training set of a certain number of examples in order to estimate
their parameters. This section presents the so-called reinforcement learning approach.
Unlike the supervised learning, it does not need a training set to earn the knowledge of
the system under consideration. This approach has to find a suitable action based on
the current situation or environment to minimize a certain reward function [Bis06]. In
other words, the learning is performed via a trial and error process, where its reliability
and accuracy are indicated via the reward function. Applications on the reinforcement
learning can be: robot leg coordination, autonomous flying, cell phone routing, factory
control, etc,. As no training set is utilized, a reward function is instead considered to give
an indication about the learning method itself: good or bad. For an analytical description,
Markov decision process (MDP) is to be presented.

7.2.1 Markov Decision Process (MDP)

MDP can be represented via the tuple (S,A, {Psa}, γ,R), where

• S is a set of states.

• A is a set of actions.

• Ps,a transition probabilities indicating the probability the system is presented in
state s ∈ S and taking the action a ∈ A. Ps,a is a probability distribution over the
state space.
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• γ ∈ [0, 1] is a discount factor.

• R is a reward function, denoted by R : S ×A −→ R, or simply by R : S −→ R.

The dynamics of the process can be represented as

s0
a0−→ s1

a1−→ s2
a2−→ s3

a3−→ . . . ,

where s0, s1, s2, s3, · · · ∈ S, and a0, a1, a2, a3 · · · ∈ A. The total payoff is given by

R(s0, a0) + γR(s1, a1) + γ2R(s2, a2) + γ3R(s3, a3) + . . . ,

or simply by
R(s0) + γR(s1) + γ2R(s2) + γ3R(s3) + . . . ,

if the dependency is on the states only. The goal of the reinforcement learning can be
formulated as

max E(R(s0) + γR(s1) + γ2R(s2) + γ3R(s3) + . . . ),

over all actions in A. For this matter, a policy function π is defined as

π : S −→ A : s −→ π(s),

where the state s ∈ S takes an action a = π(s). Furthermore, the value function for the
policy π is defined by

V π(s) = E(R(s0) + γR(s1) + γ2R(s2) + γ3R(s3) + · · · | s0 = s, π),

which represent the expected total payoff upon starting in state s, and applying the policy
π. Note that for any policy π, the Bellman equations hold, i.e.,

V π(s) = R(s) + γ
∑
s′∈S

Ps,π(s)(s
′)V π(s′). (7.5)

The right-hand side in (7.5) represents an immediate reward R(s) plus the expected sum
of future discounted rewards. As an exercise, prove that (7.5) holds.
Furthermore, solving for V π for fixed policy π means to solve | S | number of linear
equations with | S | variables if | S |<∞ holds where S = {1, . . . ,m},m ∈ N.
Let R,Ψπ and Vπ be variables defined as

R = (R(1), . . . , R(m))T ∈ Rm,

Ψπ =

 P1,π(1)
...

Pm,π(m)

 ∈ Rm×m,

and

Vπ = (V π(1), . . . , V π(m))T ∈ Rm,
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thus (7.5) can be represented in matrix form as

Vπ = R + γΨπVπ ⇐⇒ Vπ = (Im − γΨπ)−1R, (7.6)

provided the inverse exists. In (7.6), Im represents an m×m identity matrix. Thus, the
optimal value function is defined as

V ?(s) = max
π

V π(s)

= max
π

E(R(s0) + γR(s1) + γ2R(s2) + · · · | s0 = s, π),

which indicates that the maximum expected payoff over all policies π, when starting at
state s ∈ S. In analogous to (7.5), it holds that

V ?(s) = R(s) + max
a∈A

∑
s′∈S

Ps,a(s
′)V ?(s′).

Futhermore, we also define

π?(s) = arg max
a∈A

∑
s′∈S

Ps,a(s
′)V ?(s′). (7.7)

A partial ordering over policies is defined as

π ≥ π′ if V π(s) ≥ V π′(s), for all s ∈ S.

Theorem 7.1. a) There exists an optimal policy π? with

π? ≥ π, for all policies π, such that π? is given by (7.7)

b) All optimal policies achieve the same value,

V π∗(s) = V ∗(s)

In other words, both a) and b) state that an optimal policy π∗ is independent of the initial
state s ∈ S.
At this point, it is still needed to compute the optimal policy π?. For this matter, there
are mainly two algorithms: the value iteration, and the policy iteration algorithms.

7.2.2 Computing the optimal policy

The policy iteration algorithm is utilized to find the optimal π?. It is indicated in Algo-
rithm 5.
Based on Algorithm 5, it can be note that,
a) for fixed policy π, Vπ can be computed from (7.5),
b) V (s′) is obtained with respect to the actual policy π. Update of π is greedy with respect
to V.
After a finite number of iterations, V converges to V?, and π to π?.
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Algorithm 5 Policy iteration algorithm

1: procedure Initialize π randomly
2: repeat
3: a) V := Vπ

4: b) For each s ∈ S, let π(s) := arg max
a∈A

∑
s′∈S

Ps,a(s
′)V (s′)

5: until Convergence

7.2.3 Model learning for MDPs

In practice, the transition probability Ps,a and sometimes the reward function R are un-
known. Therefore, it is required to estimate Ps,a(s

′), s′ ∈ S, and R(s′) from a given
(observed) data, which are obtained by carrying out trials or experiments in the form of

s
(`)
0

a
(`)
0−−→ s

(`)
1

a
(`)
1−−→ s

(`)
2

a
(`)
2−−→ s

(`)
3 . . . ,

for ` = 1, 2, . . . ,∈ N number of trails. Thus, the estimate of Ps,a, denoted by P ?s, a is
calculated as

P ∗s,a =
times took action a in state s and got to s′

times tool action a in state s
.

In case of 0
0 , P ?s, a(s′) is chosen to be uniformly distributed, such that P ?s,a(s

′) = 1
|S| .

Similarity, R(s) can be estimated from observed data. Possible algorithm for learning a
MDP with unknown Ps,a is shown in Algorithm 6.

Algorithm 6 Possible algorithm for learning a MDP with unknown Ps,a

1: procedure Initialize π randomly
2: repeat
3: a) Execute π in the MDP for some number of trials `
4: b) Update the estimates P ∗s,a(and potentially R)
5: c) Update π using Algorithm 5
6: until Convergence
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